Fact-checked by Grok 2 weeks ago

6PPD

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is a synthetic diarylamine compound utilized as an antiozonant and antioxidant in rubber formulations, most prominently in vehicle tires, to prevent oxidative cracking and extend service life by neutralizing ozone and reactive oxygen species. Introduced commercially in the 1960s, 6PPD constitutes a significant portion of antidegradants in modern tires due to its efficacy, solubility, and migration properties that enable surface protection. Upon exposure to atmospheric ozone, 6PPD oxidizes to form 6PPD-quinone (6PPD-Q), a transformation product that leaches into stormwater via tire wear particles, leading to widespread environmental dispersion. This quinone has been empirically linked to acute toxicity in coho salmon (Oncorhynchus kisutch), manifesting as rapid mortality in urban runoff scenarios termed urban runoff mortality syndrome (URMS), with laboratory exposures confirming LC50 values as low as 41–95 ng/L for juveniles. While essential for tire durability and road safety, the compound's persistence and bioaccumulation potential have prompted regulatory scrutiny and research into alternatives, highlighting a tension between industrial utility and ecological risk.

Chemical Properties and Synthesis

Molecular Structure and Properties

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine, commonly abbreviated as 6PPD, is an with the molecular formula C_{18}H_{24}N_2 and a of 268.40 g/. Its IUPAC name is N-(1,3-dimethylbutyl)-N'-phenylbenzene-1,4-diamine, and it bears the number 793-24-8. The molecular structure consists of a central p-phenylenediamine (1,4-benzenediamine) core, where one atom is directly bonded to a and the other to a branched 1,3-dimethylbutyl chain (CH(CH_3)CH_2CH(CH_3)_2). This unsymmetrical substitution provides steric protection and enhances solubility in non-polar media, key to its function as a rubber antidegradant.
PropertyValue
AppearanceDark purple flakes or granules
44–54 °C
>260 °C (at 760 mmHg)
0.99–1.07 g/cm³
Solubility in Insoluble (<1 mg/L)
Solubility in organicsSoluble in acetone, benzene, ethyl acetate
Vapor pressure (25 °C)Negligible (~7 × 10^{-6} Pa)
These properties render 6PPD a waxy, low-volatility solid at ambient temperatures, facilitating its incorporation into rubber matrices during vulcanization while minimizing environmental release via volatilization.

Synthesis and Manufacturing

6PPD, or N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, is primarily synthesized via reductive amination of p-aminodiphenylamine with methyl isobutyl ketone (4-methylpentan-2-one). This reaction forms an imine intermediate from the ketone and the secondary amine, followed by hydrogenation to yield the tertiary amine product. Industrial processes typically employ platinum or nickel catalysts under elevated temperature and hydrogen pressure, achieving yields exceeding 98%. The p-aminodiphenylamine precursor is often produced by hydrogenation of N-phenyl-p-nitroaniline, derived from aniline and p-chloronitrobenzene or nitrobenzene. Alternative routes include reacting N-phenyl-p-quinoneimine and p-hydroxydiphenylamine with 1,3-dimethylbutylamine in methanol at moderate temperatures (e.g., 55°C). These methods ensure high purity for rubber additive applications, with reaction conditions optimized to minimize byproducts like methyl isobutyl carbinol. Manufacturing occurs on a large scale by specialty chemical producers such as LANXESS, Flexsys, and Chinese firms, with global production dominated by China at approximately 200,000 metric tons annually as of 2020. Processes emphasize precise control of raw materials, including aniline derivatives and ketones, in continuous or batch reactors to meet tire industry specifications for antiozonant efficacy. Safety protocols address the compound's irritant properties during handling and distillation.

Historical Development

Discovery and Early Use

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine, commonly known as 6PPD, emerged in the early 1960s as an advanced derivative of p-phenylenediamine-based compounds designed to protect rubber from ozone-induced degradation. These antiozonants addressed limitations of earlier variants, such as N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), by incorporating the branched 1,3-dimethylbutyl substituent, which enhanced solubility, migration to rubber surfaces, and long-term efficacy against dynamic ozone cracking during tire flexing. A key milestone was a British patent granted in 1964, detailing the synthesis and application of 6PPD for stabilizing vulcanized rubber under atmospheric exposure. Initial commercial synthesis involved reductive alkylation of N-phenyl-p-phenylenediamine with 1,3-dimethylbutanal or related aldehydes, followed by hydrogenation, building on established routes for developed post-World War II amid rising vehicle tire demands. Laboratory evaluations in the early 1960s demonstrated 6PPD's superiority, with ozone protection times exceeding 100 hours under standard dynamic tests (e.g., 40°C, 0.5 ppm ozone), compared to under 50 hours for , prompting its prioritization over wax-based static protectants insufficient for high-speed applications. Early adoption occurred in tire manufacturing starting in the mid-1960s, with select producers incorporating at levels of 1-3 phr (parts per hundred rubber) in tread and sidewall compounds to mitigate cracking observed in radial tires. By the early 1970s, its use expanded due to proven durability in field trials, where tires treated with 6PPD exhibited minimal surface deterioration after 50,000-100,000 km of service, outperforming predecessors amid growing highway speeds and synthetic rubber prevalence. This period marked a shift from trial implementations to standard formulation, as 6PPD's dual antioxidant-antiozonant properties reduced overall additive needs while maintaining flex fatigue resistance.

Adoption in Tire Industry

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) was first developed as a chemical antiozonant for rubber in the mid-1960s, with a British patent (No. 1035262A) issued in 1965 for its application in preserving diene rubbers such as those used in tires. Initial commercial production ramped up following a 1964 patent publication on its manufacturing process, and by 1968, a dedicated factory expansion increased supply to the U.S. tire industry. Tire manufacturers began incorporating 6PPD into formulations in the mid-1960s to early 1970s, marking a shift from earlier antiozonants like N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD) and wax-based protectants, which offered limited dynamic protection against ozone-induced cracking during vehicle flexing. Its adoption accelerated due to superior solubility in synthetic rubbers like (SBR), prolonged antiozonant efficacy under repeated strain, reduced blooming on tire surfaces, and cost-effectiveness in production. By the 1970s, 6PPD had achieved widespread use across major tire producers for passenger vehicle treads, becoming the dominant antidegradant owing to empirical testing demonstrating enhanced resistance to ozone attack, oxygen degradation, and thermal fatigue compared to predecessors. This integration supported the industry's transition to designs, which demanded robust protection for sidewall and tread longevity under high-speed conditions. Today, 6PPD remains standard in nearly all new passenger tires globally, typically at concentrations of 1-2.5% by weight in tread compounds.

Industrial Applications and Functions

Role as Antiozonant and Antioxidant

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) functions primarily as an antiozonant in rubber compounds, particularly vehicle tires, by scavenging atmospheric ozone molecules that would otherwise react with the carbon-carbon double bonds in elastomers, leading to chain scission, cracking, and loss of mechanical integrity. This protection occurs through two complementary mechanisms: direct kinetic scavenging, where 6PPD rapidly consumes ozone at the tire surface before it can penetrate and degrade the rubber, and the formation of a thin polymeric film that acts as a physical barrier against further ozone ingress. In addition to its antiozonant properties, 6PPD exhibits antioxidant activity by inhibiting oxidative degradation caused by molecular oxygen and other reactive species, thereby preventing the formation of free radicals that propagate chain reactions within the polymer matrix. This dual role extends tire lifespan by mitigating both ozonation and oxidation, with 6PPD's mobility in the rubber allowing it to bloom to the surface for external protection while also safeguarding internal components from fatigue and aging. Industry formulations typically incorporate 6PPD at concentrations of 1-3% by weight to achieve optimal performance against environmental stressors. The efficacy of 6PPD stems from its chemical structure, featuring a p-phenylenediamine core that facilitates electron transfer and hydrogen donation to neutralize ozone and peroxides, outperforming earlier antiozonants like IPPD in long-term protection and reduced blooming issues. Computational modeling confirms that 6PPD's reaction with ozone yields stable byproducts, such as quinone derivatives, which contribute to the protective film without significantly compromising rubber elasticity. These attributes have made 6PPD indispensable in modern tire production since the late 20th century, ensuring compliance with durability standards amid increasing vehicle mileage demands.

Integration in Tire Production

6PPD is incorporated into tire rubber during the compounding stage of manufacturing, where it is blended with base polymers such as natural rubber or styrene-butadiene rubber, along with reinforcing agents like carbon black or silica, plasticizers, and vulcanization chemicals. This phase utilizes high-shear internal mixers to achieve uniform dispersion, ensuring the antidegradant integrates effectively into the uncured rubber matrix prior to shaping, assembly, and vulcanization. Dosages typically range from 1 to 3 parts per hundred rubber (phr), corresponding to 0.4–2% by mass in the compounded rubber, with concentrations around 2,200 μg/g observed in uncured tread formulations. Higher levels may be employed in silica-reinforced compounds or for tires exposed to elevated ozone and heat, optimizing protection without compromising processability. During vulcanization, approximately 1,000 μg/g of 6PPD may be released or transformed, resulting in cured tread levels of about 1,200 μg/g, while the compound's inherent solubility and low volatility facilitate post-cure migration to the tire surface for sustained antiozonant efficacy. This migration behavior, driven by the molecule's compatibility with rubber polymers, ensures a protective film forms dynamically, adapting to wear and environmental exposure throughout the tire's service life.

Benefits and Performance Impacts

Enhancement of Tire Durability

6PPD, or N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, serves as a key antiozonant in tire rubber formulations, preventing oxidative degradation caused by atmospheric ozone exposure. Ozone attacks the carbon-carbon double bonds in natural and synthetic rubber, leading to surface cracking, particularly on tire sidewalls during periods of static exposure such as when vehicles are parked. By migrating to the rubber surface and undergoing a sacrificial chemical reaction with ozone molecules, 6PPD forms a protective polymeric film that shields the underlying polymer chains from further attack, thereby inhibiting crack initiation and propagation. This antiozonant function significantly extends tire service life by reducing the rate of ozone-induced cracking, which is a primary mode of tire failure in ambient conditions. Tires treated with 6PPD demonstrate enhanced resistance to flex cracking and weathering, maintaining structural integrity over extended periods compared to untreated rubber. Industry assessments indicate that 6PPD's protective efficacy contributes to overall tire longevity, with formulations typically incorporating it at levels sufficient to sustain performance throughout the tire's operational lifespan, often spanning tens of thousands of kilometers. Additionally, 6PPD's complementary antioxidant properties mitigate oxidative damage from molecular oxygen and heat, further bolstering durability against thermal and dynamic stresses encountered during vehicle operation. The integration of 6PPD has been standard in passenger and truck tires since the 1960s, correlating with improvements in tire reliability and reduced premature failures due to environmental degradation. Testing protocols, such as those evaluating sidewall cracking under controlled ozone exposure, confirm that 6PPD-treated compounds exhibit markedly superior performance, with crack growth rates minimized to levels that support safe vehicular use. Without such antidegradants, tires would succumb to rapid deterioration in ozone-rich atmospheres, compromising vehicle safety and necessitating more frequent replacements.

Contributions to Vehicle Safety

6PPD functions as a sacrificial antiozonant in tire rubber compounds, reacting preferentially with atmospheric ozone to form protective films on tire surfaces and prevent oxidative chain reactions that cause cracking and embrittlement. This protection is critical for sidewall and tread integrity, as ozone exposure—prevalent in urban environments and during vehicle operation—can otherwise lead to surface fissures that propagate under mechanical stress, compromising tire structural stability. By scavenging ozone molecules, 6PPD extends tire service life and maintains elasticity, reducing the incidence of premature degradation observed in unprotected rubber, where cracks can deepen to 1-2 mm within months of exposure. Tire failures, including blowouts and sudden deflations from degraded sidewalls, contribute to approximately 11,000 crashes annually in the United States, often resulting from underinflation or structural weaknesses exacerbated by environmental aging. 6PPD's role in mitigating ozone-induced failures enhances overall vehicle handling, traction, and braking performance, as intact tires ensure consistent contact patch and load distribution essential for safe maneuverability. Industry formulations incorporating 1-3% 6PPD by weight have demonstrated resistance to cracking for over 100,000 km of service in dynamic flex tests simulating real-world conditions. This durability directly supports regulatory standards for tire endurance, such as , which mandates resistance to environmental stressors to avert catastrophic separation during highway speeds. Beyond static protection, 6PPD's antioxidant properties inhibit oxygen permeation and heat buildup during prolonged use, averting flex fatigue that could precipitate tread detachment—a failure mode linked to high-speed instability and loss of control. Tires treated with 6PPD exhibit up to 50% greater retention of tensile strength after accelerated aging compared to untreated counterparts, correlating with lower field failure rates in fleets exposed to polluted atmospheres. These attributes collectively reduce the probability of tire-related incidents, underscoring 6PPD's foundational contribution to the safety engineering of modern radial tires.

Environmental Transformation

Formation of 6PPD-Quinone

6PPD-quinone (6PPD-Q) primarily forms through the abiotic oxidation of , the N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine antiozonant incorporated into tire rubber, by atmospheric (O₃). This reaction occurs as tires are exposed to ambient air during vehicle operation, where 6PPD sacrificially reacts with ozone to prevent rubber degradation from ozonolysis-induced cracking. Density functional theory (DFT) computations have elucidated the mechanism, revealing that ozone initially adds across the nitrogen-carbon double bond in 6PPD or abstracts a hydrogen from the amine group, leading to intermediates that rearrange and further react with O₃ to yield 6PPD-Q via quinone formation. Experimental studies confirm rapid 6PPD transformation to 6PPD-Q upon ozonation, with solid-phase reactions simulating tire wear particles (TWPs) showing near-complete conversion under atmospheric O₃ levels over hours. For instance, exposure of 6PPD-containing rubber to 100 ppb O₃ for 15 minutes produces detectable 6PPD-Q, mirroring ambient conditions. While ozone is the dominant oxidant in environmental settings, minor pathways include photodegradation under UV light, which accelerates 6PPD release from tires and its conversion to 6PPD-Q via direct photolysis or singlet oxygen oxidation, though these contribute less to overall formation compared to ozonation. In aqueous media, such as road runoff, residual 6PPD in TWPs can undergo slower O₃-mediated oxidation, but the bulk formation precedes particle abrasion.

Pathways in Tire Wear and Runoff

Tire wear particles (TWPs) are primarily generated through mechanical abrasion between tire treads and road surfaces during vehicle acceleration, braking, and cornering, releasing microscopic rubber fragments that encapsulate added to tire rubber as an antiozonant. These TWPs, typically ranging from sub-micrometer to millimeter sizes, contain embedded 6PPD molecules that remain stable within the polymer matrix until environmental stressors promote leaching. Smaller TWPs (<0.1 mm) exhibit higher release rates of additives like 6PPD due to increased surface area and susceptibility to mechanical agitation in runoff conditions. Studies indicate that tire abrasion contributes substantially to urban particulate emissions, with 6PPD concentrations in fresh TWPs varying by tire type but consistently present at levels reflecting its 0.5-2% formulation in rubber compounds. Once deposited on roadways, parking lots, and other impervious surfaces, TWPs accumulate as road dust, where dry deposition and resuspension via traffic further distribute 6PPD-laden particles into the air and soil before wet-weather mobilization. Precipitation events trigger stormwater runoff, which erodes and suspends these particles, facilitating the transport of 6PPD into municipal drainage systems, rivers, and coastal waters. Runoff pathways are dominated by overland flow on urban hardscapes, with minimal infiltration due to compaction, leading to peak contaminant loads during initial "first flush" of storms when accumulated TWPs are flushed into receiving waters. Research quantifies this process showing 6PPD and its derivatives entering stormwater at concentrations up to several micrograms per liter in heavily trafficked areas, with annual inputs from tires estimated to rival other urban pollutant sources. In aquatic systems, TWPs settle in sediments or remain suspended, where hydrological factors like flow velocity and turbulence influence 6PPD dispersion and bioavailability prior to oxidative transformation. Urban stormwater infrastructure, including untreated outfalls, exacerbates direct delivery to sensitive habitats, as evidenced by detections in road runoff correlating with proximity to high-traffic zones. While biodegradation of 6PPD in TWPs is limited under anaerobic sediment conditions, photolysis and leaching in oxygenated surface waters initiate release, underscoring runoff as the dominant vector for environmental entry.

Detection and Occurrence

Analytical Methods

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) serves as the predominant analytical technique for detecting and quantifying 6PPD and its transformation product 6PPD-quinone in environmental matrices such as water, road runoff, and biota, owing to its high sensitivity, selectivity, and ability to handle trace-level concentrations. This method typically employs reversed-phase liquid chromatography separation followed by electrospray ionization and multiple reaction monitoring (MRM) for targeted analysis, enabling detection limits as low as 0.001 µg/L for 6PPD-quinone in water samples through isotope dilution with deuterium-labeled standards to mitigate matrix effects and ensure accuracy. For instance, EPA Method 1634, a validated single-laboratory protocol released in 2024, specifies LC-MS/MS for 6PPD-quinone in aqueous matrices, incorporating solid-phase extraction (SPE) for preconcentration and achieving method detection limits around 1-5 ng/L depending on sample volume and cleanup efficiency. Sample preparation varies by matrix complexity to minimize interferences from particulates or organic matter. In stormwater and road runoff, direct injection LC-MS/MS has been developed for low-volume (e.g., 100-500 µL) analysis of 6PPD-quinone, bypassing extensive extraction for rapid screening, though SPE using Oasis HLB cartridges or equivalent is recommended for higher particulate loads to achieve recoveries of 80-110% and reduce ion suppression. For solid or biological samples like tire wear particles, soil, or fish tissues, accelerated solvent extraction (ASE) or liquid-liquid extraction (LLE) with solvents such as acetonitrile or methanol precedes LC-MS/MS, yielding limits of quantification (LOQ) of 0.37-0.67 ng/g wet weight in salmonid tissues with relative standard deviations below 15% for repeatability. High-resolution mass spectrometry (HRMS) variants, such as Orbitrap or Q-TOF systems, supplement targeted LC-MS/MS for non-target screening of additional 6PPD transformation products, identifying up to 26 metabolites in soil-earthworm systems via suspect screening workflows. Validation studies emphasize linearity (R² > 0.99), precision, and robustness against environmental variabilities, with inter-laboratory comparisons highlighting the need for matrix-matched to address adsorption losses during storage or transport, which can exceed 50% for 6PPD-quinone in untreated samples. Challenges include the parent 6PPD's instability, leading to underestimation in oxidative environments, and differentiation from isomeric interferents, addressed through orthogonal confirmation via gas chromatography- where feasible, though LC-/MS remains preferred for its compatibility with polar structures. Emerging automated high-throughput methods integrate online SPE-LC-/MS for processing hundreds of runoff samples, supporting large-scale monitoring with minimal manual intervention.

Environmental Concentrations

6PPD-quinone (6PPD-Q) has been detected in at concentrations ranging from below detection limits to several micrograms per liter, with mean values around 0.6 μg/L in reconnaissance sampling across sites, where it was present in 57% of 21 stormwater samples analyzed. Peak levels in runoff events can reach 0.21–2.43 μg/L in areas like and 0.93–2.85 μg/L in s shortly after rainfall in other regions, often exceeding thresholds for sensitive aquatic species. In rivers and streams receiving , concentrations are generally lower but persistent, with detections in over 80% of certain samples tied to inputs. In soils, particularly roadside and urban greenbelt areas, 6PPD-Q levels vary from 0.85 to 12.58 ng/g dry weight, with maximum reported values up to 936 ng/g in high-traffic proximity zones. Sediments show similar binding tendencies, with ranges in urban dusts and deposits aligning with data, reflecting particulate association from tire wear particles. Atmospheric , especially coarse fractions (9–10 μm), contains 6PPD-Q at levels around 7.78 ng/m³ in urban air samples, indicating aerial deposition as a secondary distribution pathway.
Environmental MatrixTypical Concentration RangeNotes
Urban Stormwater0.1–3 μg/LPeaks during events; means ~0.6 μg/L in U.S. surveys
/Rivers<0.1–2.85 μg/LDilution post-runoff; persistent in urban-influenced streams
Roadside Soil0.85–936 ng/gHigher near traffic; particle-bound
Urban Air Particles~7.78 ng/m³Coarse PM fraction dominant
These measurements, derived from liquid chromatography-tandem mass spectrometry analyses, highlight urban traffic as the primary source, with concentrations declining with distance from roads and varying seasonally due to precipitation and wear patterns.

Toxicity Assessments

Aquatic Effects on Salmonids

6PPD-quinone, a transformation product of the tire antiozonant 6PPD, has been identified as a causal agent in acute mortality events among coho salmon (Oncorhynchus kisutch) in urban streams, particularly during stormwater runoff episodes. Laboratory exposures demonstrate rapid lethality, with median lethal concentrations (LC50) for juvenile coho salmon ranging from 41–95 ng/L over 2 hours to 0.79 μg/L over longer durations, often accompanied by symptoms such as loss of equilibrium, lethargy, and respiratory distress within minutes to hours of exposure. This toxicity manifests as Urban Runoff Mortality Syndrome (URMS), where pre-spawn adults and juveniles experience near-total mortality in affected waterways, with stormwater concentrations frequently exceeding these LC50 thresholds—up to 19 μg/L reported in Pacific Northwest streams. Mechanistic studies reveal that 6PPD-quinone disrupts vascular integrity in , including blood-brain and blood-gill barrier permeability, leading to hemorrhage, , and impaired neurological function. These effects are species-specific among salmonids; while exhibit high sensitivity, (O. tshawytscha) show moderate tolerance with higher LC50 values, and (O. gorbuscha) alevins display at concentrations around 1 μg/L. trout (O. mykiss), a relative, also experience sublethal impacts such as reduced swimming performance at 72.2 ng/L and elevated hematocrit at 120.5 ng/L, indicating broader physiological stress across species. Sublethal exposures in juvenile salmonids further impair fitness, with 6PPD-quinone at environmentally relevant levels (e.g., 72–120 ng/L) reducing critical swimming speeds by up to 20% in 15- to 24-month-old fish, potentially exacerbating predation vulnerability and migration challenges. Interspecies variability underscores that while face existential threats from episodic —linked to population declines in regions like —other salmonids may endure chronic low-level exposures with cumulative effects on function and . These findings derive from controlled bioassays and field correlations, emphasizing 6PPD-quinone's role as a tire-derived selectively targeting anadromous salmonids during vulnerable freshwater phases.

Broader Ecological and Human Health Data

6PPD-quinone demonstrates toxicity to a range of aquatic organisms beyond salmonids, including (Oncorhynchus clarkii) and (Salvelinus fontinalis), with lethality observed at concentrations comparable to those affecting coho salmon, though interspecies sensitivity varies significantly. Recent analytical advancements enable quantification in tissues of , finfish, and marine mammals, indicating potential for through dietary exposure in marine food webs. These findings suggest broader risks to non-salmonid fish and , potentially disrupting aquatic ecosystems via acute mortality and sublethal effects like impaired . In terrestrial environments, data on 6PPD-quinone remain sparse but point to adverse impacts on soil-dwelling organisms, including earthworms and microbes, mediated by and metabolic disruption. of 6PPD to 6PPD-quinone occurs in soils under influences like UV , , and microbial activity, with persistence varying by soil type and organic content. Enantioselective has been documented in terrestrial and semi-terrestrial species, such as preferential uptake of (-)-6PPD enantiomers in and (+)-6PPD in crabs and , raising concerns for trophic transfer. Potential uptake by crops from contaminated soils or atmospheric deposition could introduce 6PPD-quinone into terrestrial food chains, though empirical quantification of population-level effects is limited. Human exposure to 6PPD-quinone occurs primarily via of airborne particles, dermal contact, and through contaminated water or food, with detection in confirming systemic . and animal studies indicate potential for oxidative damage to , DNA adduct formation, and , but direct causal links to disease remain unestablished due to insufficient epidemiological data. Preliminary associations link urinary 6PPD-quinone levels to increased risk and metabolic alterations like elevated , though these require replication to rule out confounders. Overall, while ecotoxicological potency is well-documented, thresholds await comprehensive toxicokinetic and longitudinal studies.

Regulatory Developments and Debates

Key Studies and Findings

The seminal study identifying 6PPD-quinone (6PPD-Q) as a cause of acute mortality in coho salmon was published in Science in January 2021 (submitted 2020), led by Zhenyu Tian and colleagues at the University of Washington. Researchers exposed juvenile coho salmon (Oncorhynchus kisutch) to stormwater from urban Puget Sound creeks, isolating 6PPD-Q as the primary toxicant with a median lethal concentration (LC50) of 0.79 ± 0.16 μg/L, far below typical environmental levels observed during storm events (up to 19 μg/L in runoff). This explained "urban runoff mortality syndrome," linking tire-derived pollutants to rapid fish deaths characterized by loss of equilibrium, hemorrhaging, and gill pathologies, with no similar acute toxicity from 6PPD itself. Subsequent laboratory studies elucidated mechanisms, including a 2025 investigation by the U.S. Geological Survey revealing sublethal effects on (Oncorhynchus clarkii clarkii), where exposure to 6PPD-Q at environmentally relevant concentrations (e.g., 0.1–1 μg/L) impaired swimming performance and predator evasion, potentially exacerbating population declines. A 2023 study in Environmental Science & Technology Letters demonstrated transgenerational impacts, with adult coho exposure reducing progeny survival by up to 50% and altering embryonic development, suggesting heritable fitness costs beyond immediate lethality. Peer-reviewed assays confirmed species-specific sensitivity, with coho most vulnerable (LC50 ~0.8 μg/L), while tolerated higher doses (LC50 >100 μg/L), informing debates on targeted protections. Field monitoring reinforced these findings, with a 2024 ACS ES&T study quantifying 6PPD-Q pulses in urban streams (peaks >5 μg/L post-rainfall), correlating with die-offs and highlighting persistence in sediments ( >100 days under aerobic conditions). health assessments remain preliminary; the National Toxicology Program noted in 2025 that while 6PPD-Q induces in mammalian cells at micromolar levels, epidemiological links to urban populations are absent, prioritizing aquatic over terrestrial risks in regulatory prioritization. These data underpin calls for phase-outs but face challenges from tire industry assertions that 6PPD alternatives compromise , as no substitute matches its antiozonant without trade-offs in or cost.

Government Actions and Industry Positions

In response to emerging evidence of 6PPD-quinone's toxicity to coho salmon, the U.S. Environmental Protection Agency (EPA) initiated regulatory scrutiny under the Toxic Substances Control Act (TSCA). On December 2024, the EPA finalized a rule under TSCA Section 8(d) requiring manufacturers and importers of 6PPD to submit existing health and safety studies, marking the first federal reporting mandate for the chemical. In January 2025, the EPA published an advance notice of proposed rulemaking soliciting public input on potential risks and management strategies for 6PPD and its transformation product. The agency also released a FY 2025-2028 Action Plan in November 2024 outlining research, monitoring, and risk assessment efforts, including development of a draft water testing method (Method 1634) for 6PPD-quinone in stormwater. State-level actions have advanced further, particularly in regions affected by salmon die-offs. California’s Department of Toxic Substances Control (DTSC) designated motor vehicle tires containing 6PPD as a priority product under its Safer Consumer Products Program on October 1, 2023, requiring manufacturers to evaluate alternatives and potentially restrict use—the first such regulation worldwide. Washington State followed with legislation signed on March 28, 2024, adding 6PPD-containing tires to its priority product list under a similar safer alternatives framework. In August 2024, Washington established the nation's first numeric freshwater acute criterion for 6PPD-quinone at 0.012 micrograms per liter, effective September 14, 2024, to protect sensitive species like coho salmon during stormwater exposure. The state is also developing a 6PPD Action Plan and Alternatives Assessment funded through its 2023-2025 budget. British Columbia issued acute water quality guidelines for 6PPD-quinone aligned with an EPA screening level of 0.011 µg/L. Tire industry representatives, including the U.S. Tire Manufacturers Association (USTMA), have emphasized 6PPD's critical role in preventing ozone-induced cracking and degradation, which enhances tire durability and vehicle safety. The association maintains that 6PPD is used universally due to its proven efficacy against environmental stressors like oxygen and mechanical fatigue, with no viable currently available. In response to concerns, the industry has formed a 6PPD Alternatives Assessment , reporting progress in 2025 on evaluating potential substitutes while noting challenges from impending EU and restrictions on related phenylenediamines. The Tire Industry Project (TIP), an initiative, has conducted studies finding no to cells at environmentally relevant 6PPD-quinone concentrations and is investigating neurological effects, advocating for continued over immediate phase-outs. Industry groups have faced lawsuits, such as a 2024 action against 13 major manufacturers seeking a 6PPD ban, but maintain that alternatives must match safety performance without compromising .

Alternatives Research and Challenges

Research into alternatives to 6PPD, an antiozonant critical for durability against degradation, has accelerated since 2021 following evidence of 6PPD-quinone's to . The U.S. Tire Manufacturers (USTMA) initiated a Stage 1 alternatives analysis under California's Safer Consumer Products Regulation, evaluating candidates that must match 6PPD's performance in preventing cracking while minimizing environmental harm from transformation products. This includes joint studies with the U.S. Geological Survey, which as of November 2023, test cell lines exposed to three potential 6PPD substitutes and their ozonation byproducts to assess toxicity. Proposed alternatives span chemical modifications and novel materials. A 2021 Berkeley student project suggested strategies like using food-grade preservatives such as gallates for antioxidant effects, incorporating lignin polymers for ozone scavenging, chemically altering 6PPD to block quinone formation, or enhancing tires with silica reinforcements to reduce antiozonant reliance. Industry efforts explore coal-derived as a non-toxic antiozonant, with 2025 research indicating potential to replace 6PPD without compromising tire integrity. Washington State 's 2023 initiative applies hazard criteria to screen replacements, prioritizing those with low bioaccumulation and non-toxic oxidation products. Phenotypic profiling studies published in 2025 compare structurally similar compounds, identifying candidates with reduced electrophilicity to avoid salmonid gill disruption. Challenges in commercialization persist due to stringent performance demands. Alternatives must ensure tire compliance with , maintaining flexibility, heat resistance, and longevity under dynamic loads equivalent to 6PPD, which constitutes up to 2% of tread weight. Compatibility issues arise, as substitutes require integration with rubber polymers, processes, and other additives without accelerating aging or reducing grip. Ozonation of replacements often yields unpredictable transformation products, necessitating toxicity screening akin to 6PPD-quinone's acute at parts-per-billion levels. Holistic evaluations, as emphasized by Smithers in 2025, demand lifecycle assessments to avoid shifting risks, such as increased or human carcinogenicity, while scaling production economically remains unproven for bio-based options like . Regulatory timelines, including California's ongoing reviews, underscore that no has yet achieved field validation by 2025.

References

  1. [1]
    6PPD-quinone | US EPA
    Nov 26, 2024 · Vehicle tires contain the chemical known as 6PPD to prevent tires from breaking down due to reactions with ozone and other reactive oxygen species in the air.
  2. [2]
  3. [3]
    Tire-derived contaminants 6PPD and 6PPD-Q: Analysis, sample ...
    Since the 1960s, the anti-degradant, 6PPD (6-p-phenylenediamine; N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine), has been used in tires to prevent ...
  4. [4]
    N′-phenyl-p-Phenylenediamine (6PPD) and Its Derivative ... - MDPI
    May 28, 2024 · N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is an antiozonant and antioxidant which is predominantly used as an additive in ...
  5. [5]
    Tire-Derived Transformation Product 6PPD-Quinone Induces ...
    Jul 19, 2023 · Urban stormwater runoff frequently contains the car tire transformation product 6PPD-quinone, which is highly toxic to juvenile and adult coho salmon.
  6. [6]
    A ubiquitous tire rubber–derived chemical induces acute mortality in ...
    These data implicate 6PPD-quinone as the primary causal toxicant for decades of stormwater-linked coho salmon acute mortality observations. Although minor ...
  7. [7]
    6PPD in Tire Manufacturing | USTMA
    6PPD serves an essential safety function in tires as an antioxidant and antiozonant, protecting the components of the tire from attack by ozone, oxygen, and ...
  8. [8]
    6PPD - Washington State Department of Ecology - | WA.gov
    6PPD is a chemical that prevents automotive tires from degrading (i.e., breaking down) and helps them last longer. When 6PPD is exposed to air, ...
  9. [9]
    1,4-Benzenediamine, N-(1,3-dimethylbutyl)-N'-phenyl - PubChem
    N-(1,3-DIMETHYLBUTYL)-N'-PHENYL-P-PHENYLENEDIAMINE, AN ANTIOZONANT PURPORTED TO BE NONSENSITIZING, GAVE POS RESPONSES IN ALL PATIENTS ALLERGIC TO N-ISOPROPYL-N' ...
  10. [10]
    N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine
    Properties: Dark purple granule or flakes. Relative density 0.986-1.00, melting point 45-50'C, Soluble in benzene, acetone, Ethyl Acetate, ...
  11. [11]
    [PDF] SAFETY DATA SHEET - FUJIFILM Wako
    Melting point/freezing point. 44.0 - 54.0 °C. Boiling point, initial boiling point and boiling range ... N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine.
  12. [12]
    [PDF] MSDS-6PPD.pdf
    Skin and body: Wear suitable protective clothing. 9. PHYSICAL AND CHEMICAL PROPERTIES ... Boiling point/range: 227°C @ 4 Torr. Melting point/range: 45-50 °C.
  13. [13]
    [PDF] Antioxidant-4020.pdf - HUNAN CHEM
    6PPD ... Physical properties. Boiling Point (°C):. 263.0 min. Specific Density (g/cm3):. 1.056. Flash point (°C):. 204.0. Water solubility (g/100ml at 20°C): ...
  14. [14]
    [PDF] N'-PHENYL-P-PHENYLENEDIAMINE (6PPD) (CAS #793-24-8 ...
    Oct 12, 2021 · Physicochemical Properties of N-(1,3-Dimethylbutyl)-N'-Phenyl-p ... N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine. United States ...
  15. [15]
    [PDF] phenyl-1,4-phenylenediamine CAS N°: 793-24-8
    May 11, 2005 · 6PPD is a brown solid substance with a melting point of 50°C. 6PPD has a caluculated boiling point of 370 °C. It is nearly insoluble in ...
  16. [16]
    Method for synthesizing p-phenylenediamine anti-aging agent by ...
    ... reductive amination reaction, with 6PPD yield up to 98.3% and 1.2% MIBC. DE3728141 describes the preparation of 4010NA by reaction of 4-aminodiphenylamine ...
  17. [17]
    N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine synthesis
    Synthesis of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine from 4-Methyl-2-pentanone and 4-Aminodiphenylamine.Chemicalbook can provide 13 synthetic ...
  18. [18]
    [PDF] Saving coho salmon: Alternatives for 6PPD in tire manufacturing
    Dec 18, 2021 · Our first strategy involves synthetic modification of the 6PPD molecule in order to pre- vent formation of its toxic quinone form. Our second ...
  19. [19]
    Preparation of N-substituted-N'-phenyl-P-phenylenediamines
    The present invention relates to a process for the preparation of a N-substituted-N'-phenyl-p-phenylenediamine of the formula: comprising reacting (a) a ...
  20. [20]
    Emerging N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine ...
    In 2020, China's annual production of 6PPD reached 200,000 tons, accounting for 54 % of total antioxidant production [4]. Researchers found that 6PPD could ...
  21. [21]
    6PPD Rubber: Understanding Its Role in Tire Manufacturing
    Jan 19, 2024 · Overall, the production process of 6PPD is a complex chemical process that requires careful selection of raw materials, precise control of ...<|separator|>
  22. [22]
    [PDF] 4-(dimethylbutylamino)diphenylamine (6PPD) - OSPAR Commission
    Feb 19, 2000 · In Germany, 6PPD is manufactured in an industrial scale only at the Bayer AG Brunsbüttel plant with a manufacturing volume in the range of 10 ...
  23. [23]
    1 Introduction - 6PPD & 6PPD-quinone - ITRC
    Some tire manufacturers began using 6PPD in tire manufacturing in the mid-1960s and early 1970s. In 1964, a British patent ( ...
  24. [24]
    [PDF] Full PDF - 6PPD & 6PPD-quinone - ITRC
    Following the Rock Island Arsenal Technical Report, the first PPD antiozonants developed were active against ozone but they were not as effective as 6PPD ...
  25. [25]
    [PDF] dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD)
    Jul 17, 2024 · This is a preliminary report on alternatives analysis for motor vehicle tires containing 6PPD, prepared for the US Tire Manufacturers ...
  26. [26]
    Discovery of tire-related chemical that kills coho salmon sparks ...
    Aug 26, 2021 · The recent groundbreaking discovery of a deadly chemical derived from automobile tires, a chemical that can rapidly kill coho salmon swimming in urban streams.<|separator|>
  27. [27]
    A Nasty Salmon-Killing Tire Chemical Is in Bay Waterways. Can It ...
    Mar 2, 2023 · 6PPD, its precursor, was first used in tires in the mid-1960s and was in widespread use by the 1970s, according to the U.S. Tire Manufacturers ...<|control11|><|separator|>
  28. [28]
    [PDF] Preliminary (Stage 1) Alternatives Analysis Report
    Additionally, tire manufacturers began using 6PPD in tire manufacturing in the mid-1960s to early 1970s. However, significant declines in the coho salmon ...
  29. [29]
    [PDF] Product-Chemical Profile for Motor Vehicle Tires Containing 6PPD
    Several qualities of 6PPD make it an optimal antidegradant for tires, including its solubility and mobility. Page 10. Product-Chemical Profile for Motor Vehicle ...
  30. [30]
    Computational Studies of Rubber Ozonation Explain the ...
    Mechanistic DFT computations explain the reactivity of 6PPD toward ozone and directly link PPD function to toxicity through quinone formation.<|separator|>
  31. [31]
    Transformation pathways, detection, removal, and sustainable ...
    This review synthesizes recent advances in the understanding of 6PPD degradation pathways, including ozonation, photodegradation, hydrolysis, microbial ...
  32. [32]
    [PDF] SUPPORTING RESEARCH INTO 6PPD AND 6PPD-QUINONE
    HOW DOES 6PPD SUPPORT TIRE SAFETY? 6PPD reacts with oxygen and ozone in the air to minimize the opportunity for these agents to attack the tire surface.
  33. [33]
    Exposure to N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine ...
    Mar 1, 2022 · N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) is an S-PPD with excellent anti-aging properties that makes up 60–70% of all S-PPDs ...
  34. [34]
    [PDF] Antioxidants and Antiozonants role in manufacturing safe tires
    Mechanism of formation under environmental conditions (How does 6PPD-. Quinone form? And where does it form?) • Influence stormwater and receiving water ...
  35. [35]
    [PDF] The Presence and Potential Impacts of the Tire-Wear-Derived ...
    Sep 13, 2024 · 6PPD is an antioxidant agent that enhances tire durability and prevents the cracking and degradation of tire rubber due to exposure to ozone.
  36. [36]
    6PPD and Tire Manufacturing 2021 | USTMA
    6PPD is used industry wide to help tires resist degradation and cracking, which is vital for driver and passenger safety. Antioxidants support increased ...
  37. [37]
    Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from ...
    Apr 1, 2022 · The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with ...
  38. [38]
    Document (EPA-HQ-OPPT-2024-0403-0001) - Regulations.gov
    6PPD has been used globally since the 1960s as an antidegradant and antiozonant to prevent automobile tire degradation caused by exposure to ozone, oxygen, and ...
  39. [39]
    Review Tire-rubber related pollutant 6-PPD quinone
    Oct 5, 2023 · Among PPDs, 6-PPD is the most widely consumed as an antioxidant in rubber. The production of 6-PPD has reached up to 200 thousand tons in ...<|control11|><|separator|>
  40. [40]
    Tire Anti-Degradants (6PPD) Team - ITRC
    Tire anti-degradants are used to extend the life of tires by preventing the cracking and breakdown of rubber as it reacts with ozone over time. 6 p- ...
  41. [41]
    Analysis, environmental occurrence, fate and potential toxicity of tire ...
    Jun 15, 2023 · The antioxidant 6-PPD has been widely used to prevent cracking and thermal oxidative degradation and to extend the service life of tire rubber.
  42. [42]
    6PPD-Quinone - National Toxicology Program - NIH
    Jul 9, 2025 · This antioxidant helps prevent tires from forming cracks and deteriorating when exposed to sunlight and other environmental factors. When 6PPD ...
  43. [43]
    Computational Studies of Rubber Ozonation Explain the ...
    Mar 24, 2023 · The former pathway results in a hydroxylated PPD intermediate, which reacts further with O3 to afford 6PPD hydroquinone and, ultimately, 6PPDQ.
  44. [44]
    [PDF] Transformation Product Formation upon Heterogeneous Ozonation ...
    Apr 15, 2022 · In pure 6PPD ambient air controls, 6PPDQ formation was observed at 6 h (1.9 nmol) at levels similar to those of 15 min O3 exposures (2.6 nmol), ...
  45. [45]
    First insights into 6PPD-quinone formation from ... - ScienceDirect.com
    Oct 5, 2023 · Mechanisms involved in 6PPD photodegradation include photoexcitation, direct photolysis, self-sensitized photodegradation, and 1O2 oxidation, as ...
  46. [46]
    Tire-wear particles and tire-related emerging contaminants
    While 6PPD-quinone has received significant attention, other TRECs, such as DPG and HMMM, are also highly toxic and frequently detected in urban stormwater [54] ...
  47. [47]
    Particle sizes crucially affected the release of additives from tire ...
    This study investigated the effects and mechanisms of particle sizes (>2 mm, 0.71–1 mm, and <0.1 mm) on the release behavior of TWPs additives under mechanical ...
  48. [48]
    4 Occurrence, Fate, Transport, and Exposure Pathways
    Over time, as tires wear down, particles containing 6PPD and 6PPD-q are released into the environment (outdoor air), and present different potential exposure ...
  49. [49]
    From Tread to Watershed: How Tire Wear Particle Chemicals 6PPD ...
    Sep 6, 2024 · 6PPD-quinone is a transformation product of 6PPD, an antiozonant used in tires. Currently, 6PPD is used in all tires and can contaminate stormwater anywhere ...
  50. [50]
    Environmental fate of tire-rubber related pollutants 6PPD and 6PPD-Q
    Oct 1, 2024 · One category of these chemicals is p-phenylenediamines (PPDs), which serve as antioxidants and are added to tire rubber to prevent cracking, and ...
  51. [51]
    Occurrence of the Tire-Derived Toxicant 6PPD-Quinone in Road ...
    Aug 19, 2025 · In 2021, mortalities of coho salmon were linked to 6PPD-quinone (6PPD-Q), a transformation product formed from an antioxidant in rubber tires.
  52. [52]
    New Analytical Method for Analysis of 6PPD-Q - ALS Global
    Feb 26, 2025 · The new method uses LC-MS/MS with MRM, solid phase extraction, and Isotope Dilution quantitation, detecting 6PPD-Q to 0.001 µg/L.
  53. [53]
    6PPD-q Using Liquid Chromatography with Tandem Mass ... - EPA
    Feb 26, 2025 · Method 1634 measures 6PPD-quinone (6PPD-q) using liquid chromatography with tandem mass spectroscopy. This method is not yet approved at 40 CFR Part 136.
  54. [54]
    Direct injection analysis of 6PPD-quinone in water - SCIEX
    Apr 23, 2024 · The analytical method was evaluated by spiking 6PPD-Q at 2 levels, 20 and 200 ng/L, into the 5 different water samples. XICs for the 20 ng/L ...
  55. [55]
    Targeted quantitation of 6PPD-quinone in fish tissue samples with ...
    Jun 11, 2025 · The proposed ASE method shows acceptable limits of quantification (0.37–0.67 ng g−1), linearity (R2 > 0.996), and repeatability (relative ...
  56. [56]
    Biotransformation of Tire-Derived 6PPD and 6PPD‑Q in Soil ... - NIH
    Jul 8, 2025 · We identified 9 transformation products (TPs) of 6PPD and 26 of 6PPD-Q using suspect and nontargeted screening methods, providing the first ...<|control11|><|separator|>
  57. [57]
    Preliminary Research Sheds Light on Proper Analysis and Sample ...
    Oct 8, 2024 · USGS scientists developed methods to accurately identify aquatic compounds, such as 6PPD and 6PPD-quinone, that can cause acute mortality events in coho salmon.
  58. [58]
    Automated, High-Throughput Analysis of Tire-Derived p ...
    Studies investigating 6-PPDQ have employed solid-phase extraction (SPE) or liquid–liquid extraction (LLE) with liquid chromatography–mass spectrometry (LC-MS), ...
  59. [59]
    [PDF] 6ppd-q-peer-review-response-2024.pdf - EPA
    protect sensitive salmonids from acute toxic effects of. 6PPD-quinone. The only unused data reported was from the “Mahoney, H et al. (2022) study on ...Missing: impact | Show results with:impact
  60. [60]
    New Evidence of Rubber-Derived Quinones in Water, Air, and Soil
    Mar 22, 2022 · Comparatively, the concentrations of 6PPD-quinone in runoff water from Hong Kong varied in the range of 0.21–2.43 μg/L, which is comparable with ...
  61. [61]
    The spatio-temporal accumulation of 6 PPD-Q in greenbelt soils and ...
    Oct 1, 2024 · Our findings indicate that 6 PPD-Q is present (ranging from 0.85 to 12.58 μg/kg) in soil samples collected from both sides of urban traffic ...
  62. [62]
    Transformations of 6PPD and 6PPD-quinone in soil under redox ...
    The transformation of 6PPD in soil mainly occurs on its central benzene ring, involving reactions such as the C-N cleavage between the dimethylbutylamine moiety ...
  63. [63]
    Range of 6PPD-Q concentrations in soils, sediments, and dusts.
    The global pervasiveness of 6PPD-quinone has been documented in water, soil, and air 6PPD-quinone = N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone.
  64. [64]
    6PPD and 6PPD-Quinone in the Urban Environment - MDPI
    6PPD is a vital component in tire manufacturing, serving as an antioxidant that protects tires from oxidative degradation, thereby extending their lifespan [10] ...
  65. [65]
    Concentrations of 6PPD and 6PPD-Quinone in a United States ...
    Jul 19, 2024 · One such chemical is 6PPD-quinone (6PPD-Q), a transformation product of the tire antioxidant 6PPD. In urban stormwater runoff 6PPD-Q can exceed ...
  66. [66]
    Intensive Spatiotemporal Characterization of the Tire Wear Toxin ...
    Nov 12, 2024 · 6PPDQ is a tire-derived contaminant toxic to coho salmon (LC50 = 41–95 ng/L) found widely distributed in urban environments.
  67. [67]
    Intensive Spatiotemporal Characterization of the Tire Wear Toxin ...
    Nov 12, 2024 · 6PPDQ is acutely toxic to coho salmon (Oncorhynchus kisutch) with a LC50 range of 41–95 ng/L for juveniles, with mortality observed within 2 h ...<|separator|>
  68. [68]
    Blood–Brain and Blood–Gill Barrier Disruption in Coho Salmon ...
    Jun 17, 2025 · These findings identify BBB disruption as a key event in 6PPD-quinone toxicity and link vascular injury to behavioral symptoms in coho salmon.
  69. [69]
    Acute Toxicity of 6PPD‐Quinone to Early Life Stage Juvenile ...
    Jan 24, 2023 · Concentration–response curves for 24-h juvenile (A) coho salmon and (B) Chinook salmon exposures to 6PPD-quinone. Results confirmed that ...<|separator|>
  70. [70]
    Acute Toxicity Testing of Pink Salmon (Oncorhynchus gorbuscha ...
    Apr 23, 2024 · We investigated the acute toxicity of 6PPD-quinone in pink salmon alevins (sac fry). This species has is the only Pacific salmon that so far has not been ...
  71. [71]
    Evaluation of 6PPD-Quinone Lethal Toxicity and Sublethal Effects ...
    Jun 5, 2025 · Recently, acute toxicity of 6PPDQ was documented in coho salmon (Oncorhynchus kisutch), in what is termed urban runoff mortality syndrome (URMS) ...Missing: peer- | Show results with:peer-
  72. [72]
    Interspecies Differences in 6PPD-Quinone Toxicity Across Seven ...
    Dec 19, 2023 · 6PPD-Q is acutely toxic to select salmonids at environmentally relevant concentrations, while other fish species display tolerance to concentrations that ...
  73. [73]
    6PPD: The Secret Killer of Puget Sound Salmon | TNC
    Jun 24, 2024 · Ecotoxicologists have identified 6PPD-quinone as the main cause of pre-spawn mortality for coho salmon when they return from the ocean to freshwater.
  74. [74]
    6PPD and 6PPD-quinone - Washington State Department of Health
    6PPD prevents cracks in the rubber, making tires last longer and safer for driving. 6PPD reacts with the air and creates new chemicals called transformation ...Missing: lifespan resistance
  75. [75]
    Residues of 6PPD-Q in the Aquatic Environment and Toxicity ... - MDPI
    This review highlights the environmental persistence, bioaccumulation, and toxic effects of 6PPD-Q on aquatic organisms, emphasizing its ecological risks.
  76. [76]
    New Test Measures Toxin from Tires in Marine Life, Helping ...
    Sep 17, 2025 · Now scientists have developed an extraction method to measure 6PPD-Q in tissue samples from shellfish, finfish, and marine mammals. The method ...
  77. [77]
    Analysis of 6PPD-Q in finfish, shellfish, and marine mammal tissues
    This study presents a workflow for extraction and quantitative analysis of 6PPD-Q in complex tissues from shellfish, finfish, and marine mammals.
  78. [78]
    Environmental and Human Health Risks of 6PPD and 6PPDQ - MDPI
    6PPD and 6PPDQ exhibit disruptive effects in organisms through multiple mechanisms, including oxidative stress, inflammatory responses, metabolic disruption, ...<|separator|>
  79. [79]
    6PPD and 6PPD-Q in terrestrial environments: Environmental fate ...
    6PPD transforms into 6PPD-Q via oxidative processes driven by ozone, UV radiation, and temperature, with soil-specific factors like microbial activity and ...
  80. [80]
    Enantioselective accumulation and trophodynamics of p ...
    Sep 15, 2025 · A notable enrichment of (+)-6PPD was detected in crab and fish, while a preferential accumulation of (−)-6PPD was seen in birds.
  81. [81]
    2 Effects Characterization and Toxicity
    6PPD-q is highly toxic to coho salmon. Of the fish species studied thus far, coho salmon are the most sensitive; The effects of exposure to 6PPD-q in other ...
  82. [82]
    6PPD-quinone | U.S. Geological Survey - USGS.gov
    Feb 5, 2024 · It has been characterized as the second most toxic chemical for aquatic animal life, and has been detected in human urine, raising concerns for ...
  83. [83]
    Association between 6PPD-quinone exposure and BMI, influenza ...
    Apr 15, 2024 · Recent studies suggest that 6PPD-quinone can potentially cause oxidative harm to the human upper respiratory tract (Zhang et al., 2022a) and DNA ...
  84. [84]
    Potential human health risk of the emerging environmental ...
    Nov 1, 2024 · Human exposure to 6-PPDQ in the environment is inevitable and may lead to adverse health effects, including hepatotoxicity, enterotoxicity, ...
  85. [85]
    Associations of human exposure to 6PPD and 6PPDQ with ...
    May 15, 2025 · This study provides the first epidemiological evidence linking human 6PPDQ exposure to CRC risk, highlighting its potential role in colorectal carcinogenesis.
  86. [86]
    A ubiquitous tire rubber-derived chemical induces acute mortality in ...
    These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber ...
  87. [87]
    Expanding the Science of 6PPD-Quinone: A New Highly Sensitive ...
    While other fish species have shown some sensitivity to 6PPD-quinone, none have been found to as sensitive to 6PPD-quinone as coho salmon—until now. At the U.S ...
  88. [88]
    Tire-Derived Transformation Product 6PPD-Quinone Induces ...
    Jul 19, 2023 · Thus, induction of inflammatory responses by 6PPD-quinone in coho salmon presents a potential mechanism promoting endothelial permeability and ...
  89. [89]
    Advance Notice of Proposed Rulemaking on 6PPD and Its ... - EPA
    The chemical 6PPD has been used in motor vehicle tires for more than six decades to make them more durable. It can also be found in other rubber products such ...
  90. [90]
    N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and ...
    Jan 17, 2025 · EPA issued an advance notice of proposed rulemaking soliciting public comment on and any additional information relevant to the potential risks associated with ...
  91. [91]
    [PDF] FY 2025-2028 6PPD/6PPD-quinone Action Plan - EPA
    Nov 22, 2024 · Vehicle tires contain the chemical known as 6PPD that helps prevent degradation and cracking of rubber compounds.1 According to the U.S. Tire ...<|separator|>
  92. [92]
    EPA Releases Draft 6PPD-Quinone Water Testing Method for ...
    Feb 5, 2024 · According to the press release, EPA is continuing to fund and conduct research activities to expand its understanding of the impacts of 6PPD- ...
  93. [93]
    Adopted Priority Product: Motor Vehicle Tires Containing 6PPD
    Notice: On October 1, 2023, DTSC began regulating motor vehicle tires containing N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD).Missing: patent | Show results with:patent
  94. [94]
    Washington Designates 6PPD-containing Tires a Priority Product ...
    May 29, 2024 · On March 28, 2024, Washington signed into law a bill designating 6PPD-containing tires as a priority product under cycle 2 of its safer products scheme.Missing: developments | Show results with:developments
  95. [95]
    State sets new limits for toxic chemicals in water - GovDelivery
    Aug 14, 2024 · Washington is the first state in the nation to establish a numeric, freshwater limit for 6PPD-quinone, a chemical that comes from the breakdown ...
  96. [96]
    Washington first state to set limit on tire chemical that kills salmon
    Aug 20, 2024 · The new limit for 6PPD-quinone is set at 0.012 micrograms per liter. The new standards will take effect in Washington on September 14, but the ...Missing: ban restrictions
  97. [97]
    [PDF] Legislative Session 2025: Focus on reducing toxic tire chemical ...
    With funding provided in the 2023-25 operating budget,. Ecology is developing two products: a 6PPD Action. Plan and a 6PPD Alternatives Assessment. The 6PPD ...Missing: regulatory | Show results with:regulatory
  98. [98]
    [PDF] 6PPD-quinone Acute Water Quality Guidelines - Gov.bc.ca
    Once isolated, subsequent studies found that the toxicity of 6PPD-quinone to coho salmon was as high as the most toxic substances to aquatic life evaluated ( ...
  99. [99]
    [PDF] dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD)
    We engaged with the Akron Rubber Development Laboratory (ARDL), a highly regarded rubber testing group, to conduct screening performance tests of different ...
  100. [100]
    What is TIP doing about 6PPD-quinone? - Tire Industry Project
    The study found that 6PPD-quinone is a product of the transformation of 6PPD in air – in a process that appears to be accelerated by exposure to sunlight – ...
  101. [101]
    Lawsuits fly, as regulators come to grips with a toxic tire chemical
    Jan 29, 2024 · Starting in the 1950s, 6PPD has been infused in the rubber of tires to prevent degradation caused by ozone. Without the additive, tires are ...
  102. [102]
    Q&A: Stage 1 Alternatives Analysis For 6PPD in Tires | USTMA
    Mar 29, 2024 · In late 2020, a novel transformation product of 6PPD, called 6PPD-quinone (“6PPDQ”), was first reported to be toxic to certain species of salmon ...
  103. [103]
    U.S. Tire Manufacturers Association and U.S. Geological Survey ...
    Nov 15, 2023 · 6PPD was first developed in the 1960s and has been widely used in motor vehicle tires since the 1970s. This USTMA and USGS collaboration ...Missing: patent | Show results with:patent
  104. [104]
    Catalyzing Commercialization: Coal-Derived Graphene - AIChE
    Apr 6, 2025 · This work could prove instrumental in the journey to find a nontoxic replacement solution of 6PPD for the entire tire industry.” This research ...
  105. [105]
    We're looking for safer alternatives to 6PPD. Here's how you can help.
    Jun 14, 2023 · We'll use 6PPD alternatives assessment hazard criteria to set standards to collect data and analyze the safety of possible replacement chemicals for 6PPD.
  106. [106]
    Phenotypic Profiling of 6PPD, 6PPD-Quinone, and Structurally ...
    May 23, 2025 · Current research efforts include identifying alternative antiozonant compounds to potentially replace 6PPD in tire manufacturing. To fill ...
  107. [107]
    6 Mitigation Measures and Solutions - 6PPD & 6PPD-quinone - ITRC
    6PPD protects the components of the tire from degrading via ozone, oxygen, thermal degradation, and mechanical fatigue. Eliminating 6PPD in tires without an ...
  108. [108]
    Evaluating 6PPD Alternatives - Smithers
    Rubber materials incorporating traditional ingredients such as 6PPD, face increasing environmental challenge. Smithers experts discuss the need for holistic ...Missing: research | Show results with:research
  109. [109]
    The California Department of Toxic Substances Control Approves ...
    Sep 3, 2024 · 6PPD is an antiozonant used in motor vehicle tires sold worldwide and is critical to their safe use and longevity. Starting in 2021, scientific ...Missing: industry | Show results with:industry<|separator|>