Fact-checked by Grok 2 weeks ago

NutraSweet

NutraSweet is the trademarked brand name for , an artificial sweetener consisting of the methyl of the formed from and , which provides approximately 200 times the sweetness of on a weight basis while contributing minimal calories. Discovered in 1965 by James M. Schlatter during at G.D. Searle & Company, underwent rigorous safety evaluations before receiving U.S. approval in 1981 as a general-purpose sweetener for dry foods and in 1983 for carbonated beverages, enabling its integration into sodas, , and pharmaceuticals. The introduction of NutraSweet revolutionized low-calorie product formulations, facilitating the growth of the diet beverage market and aiding efforts by substituting sugar without altering taste profiles significantly, though its breakdown in the body releases , , and —necessitating mandatory labeling warnings for individuals with (PKU), who cannot metabolize and must strictly limit intake. Despite affirmations of safety from regulatory bodies like the FDA, which has reviewed over 100 studies deeming it safe at current exposure levels, has faced persistent scrutiny over alleged associations with migraines, behavioral changes, and carcinogenicity, claims largely unsubstantiated by comprehensive meta-analyses of human epidemiological data showing no consistent causal links beyond PKU risks. In 2023, the International Agency for Research on Cancer (IARC) classified it as "possibly carcinogenic" (Group 2B) citing limited animal evidence, a determination critiqued for methodological limitations in source studies, while the Joint FAO/WHO Expert Committee on Food Additives upheld an of 40 mg/kg body weight based on empirical toxicological data.

History

Discovery and Early Development

In 1965, chemist James M. Schlatter at G.D. Searle & Company's research laboratories in , accidentally discovered while synthesizing peptides for potential anti-ulcer medications. During routine analysis, Schlatter licked a contaminated finger to turn a page, detecting an intensely sweet taste from the dipeptide methyl N-alpha-L-aspartyl-L-phenylalanine, later identified as . This serendipitous observation prompted immediate follow-up synthesis and tasting panels, confirming the compound's profound sweetness without off-flavors typical of other sweeteners. Preliminary physicochemical and sensory evaluations established aspartame's potency at 180 to 200 times that of , depending on concentration and , with a profile closely resembling but onset slightly delayed. Its structure—composed of naturally occurring L- and L- linked by a methyl —yielded minimal caloric impact in practical use, as only trace amounts suffice for sweetening. Early metabolic profiling revealed rapid in simulated gastric conditions into , , and , suggesting assimilation akin to dietary proteins rather than persistence as an intact additive. From the late into the early , Searle conducted foundational to delineate aspartame's toxicological profile, focusing on acute and subchronic effects in prior to chronic exposure trials. These initial feeding experiments, involving doses up to several thousand times projected human intake, reported no overt and supported a preliminary , informing dose selections for extended investigations. Such data underscored aspartame's apparent metabolic inertness at low exposures, though subsequent scrutiny highlighted inconsistencies in execution that did not alter the empirical basis for advancing .

Regulatory Approval and Initial Commercialization

In July 1974, the FDA approved for use as a tabletop sweetener and in certain dry foods, such as and cereals, following review of initial studies submitted by G.D. Searle & Co. This decision was promptly challenged by objections from neuropathologist John Olney, who cited evidence from studies indicating potential tumors linked to aspartame consumption and lesions associated with its component, prompting calls for further scrutiny of metabolic and carcinogenic risks. In December 1975, the FDA stayed the approval amid concerns over the quality and authenticity of Searle's underlying studies, necessitating independent audits to verify empirical data on long-term effects. The protracted review process involved formation of a Public Board of Inquiry in to evaluate safety , including Olney's tumor concerns; in October 1980, the board revoked the 1974 approval, recommending additional studies to rule out causal links to brain tumors in animals. FDA scientists audited 15 pivotal studies, with broader validation covering over 100 toxicological, metabolic, and reproductive investigations by 1979, addressing causal uncertainties in breakdown products like and . On July 18, 1981, FDA Commissioner Arthur Hull Hayes Jr. overruled the board, reinstating approval for dry foods and tabletop uses based on the accumulated evidence demonstrating no substantiated risks at projected intake levels, while mandating post-market surveillance. Approval for carbonated beverages followed in July 1983 after supplemental confirmed under acidic conditions and reaffirmed margins. Searle commercialized the under the brand, initially launching Equal tabletop packets in 1981 for dry applications, followed by integration into beverages like in 1982, which drove explosive market growth. By the mid-1980s, NutraSweet achieved dominance in low-calorie products, with major adopters including reformulated in 1984, reflecting consumer demand for sugar alternatives amid rising concerns and the empirical validation of its non-nutritive profile.

Corporate Acquisitions and Divestitures

In 1985, acquired G.D. Searle & Company, the developer of marketed as NutraSweet, for approximately $2.7 billion in cash. This transaction integrated NutraSweet operations into a dedicated , the NutraSweet Company, allowing to leverage its chemical and agricultural expertise for expanded production and global distribution amid growing demand for low-calorie sweeteners. By 2000, as refocused on and core agrochemicals, it divested its sweetener businesses in separate transactions driven by strategic portfolio streamlining. The industrial sweetener ingredients division, including manufacturing under the NutraSweet brand, was sold to J.W. Childs Equity Partners II L.P. for $440 million in cash, preserving employment in the unit. Concurrently, the consumer tabletop sweetener operations, encompassing brands like Equal and certain NutraSweet-licensed products, were transferred to Merisant Company for $570 million, marking the end of 's direct involvement in the sector. These divestitures facilitated a shift toward specialized ownership, with J.W. Childs managing industrial supply and Merisant handling branded consumer products. Ajinomoto Co., Inc., a long-standing production partner providing key precursors like L-phenylalanine, assumed greater control over European joint ventures following Monsanto's $67 million sale of its stakes in NutraSweet AG and Euro-Aspartame SA. By the 2010s, Ajinomoto had emerged as the primary global producer of aspartame, reflecting supply chain adaptations to patent expirations and competitive manufacturing efficiencies.

Chemical Composition and Production

Molecular Structure and Breakdown

Aspartame, the active ingredient in NutraSweet, is a synthetic consisting of L-aspartic acid linked to L-phenylalanine, with the carboxyl group of phenylalanine esterified as a . Its molecular formula is C14H18N2O5, and it has a molecular weight of 294.3 g/mol. This structure confers high stability in acidic conditions but rapid under physiological conditions. In the , undergoes enzymatic primarily by peptidases, yielding free L-aspartic acid (approximately 40% by weight), L- (50% by weight), and (10% by weight). The component is oxidized sequentially by to and then by to , which integrates into the folate-dependent one-carbon . These breakdown products are absorbed and processed similarly to those from dietary proteins and natural sources, with the small quantities from —due to its potency—resulting in negligible caloric contribution despite the metabolizable nature of the (about 4 kcal/g theoretically). The potency, roughly 200 times that of , stems from the intact molecule's binding to the T1R2/T1R3 sweet taste receptor heterodimer on taste cells, where the residue contributes to the hydrophobic interactions stabilizing receptor activation.

Manufacturing Processes

The production of aspartame, the active ingredient in NutraSweet, primarily relies on to generate the precursor amino acids L-aspartic acid and L-phenylalanine. Bacteria such as Corynebacterium glutamicum and Brevibacterium flavum are cultivated in large-scale fermenters using nutrient media containing carbohydrates like , carbon sources such as acetic acid, and nitrogen sources including , over a period of approximately three days. The process maintains optimal conditions with mixing, filtered air, and pH control via addition to maximize yields. Following fermentation, the amino acids are isolated through centrifugation to separate bacterial cells, followed by purification using ion-exchange columns, crystallization in cooled tanks, and drying of the resulting crystals. L-phenylalanine is then esterified with methanol to form L-phenylalanine methyl ester, while L-aspartic acid undergoes protective modification, such as addition of benzyl groups, to direct subsequent reactions. These modified components are combined in a reactor at room temperature for 24 hours, then heated to 65°C for another 24 hours to facilitate coupling into a protected aspartame precursor; the mixture is cooled to -18°C for crystallization, filtration, and initial drying. Industrial-scale synthesis often incorporates enzymatic coupling using thermolysin, a , to selectively form the between the alpha-carboxyl group of L-aspartic acid and the amino group of L-phenylalanine methyl ester, yielding the precursor with high specificity under mild aqueous conditions. Deprotection of the precursor involves with a catalyst in acetic acid for about 12 hours, followed by catalyst removal via and solvent . Final purification achieves food-grade standards exceeding 98% purity, with limits on impurities such as 5-benzyl-3,6-dioxo-2-piperazineacetic acid not more than 1.5%, through dissolution in , recrystallization, , and drying into a white powder. Early proprietary methods developed by G.D. Searle and later emphasized chemical synthesis, but post-2000 production shifted toward global suppliers like , which consolidated fermentation-based sourcing and enzymatic or hybrid coupling at facilities such as the Tokai Plant in starting from expansions in 2004. This transition enabled scalable output, with holding significant market share by integrating microbial for precursors directly into sweetener assembly.

Applications and Formulations

Uses in Food and Beverages

NutraSweet, the brand name for , serves primarily as a high-intensity, low-calorie in dietetic foods and beverages, delivering about 200 times the sweetness of per gram while contributing negligible calories. Its approval for carbonated soft drinks in July 1983 enabled widespread adoption in products like , replacing to create zero-calorie alternatives that maintained palatability through aspartame's sugar-like taste profile. Beyond sodas, it is incorporated into chewing gums—initially approved in —and low-sugar yogurts or dairy desserts, where it provides bulk sweetening without introducing issues or off-flavors common in substitutes. Aspartame's limited thermal stability restricts its use in heat-processed applications; it begins decomposing in solution above 30°C, fully breaking down during or cooking into , , and , thereby losing its sweetening potency. This instability precludes standalone use in oven-baked goods or hot beverages, confining it largely to cold or ambient-temperature formulations like ready-to-drink items. To enhance stability, flavor synergy, and shelf life, is commonly blended with heat-resistant sweeteners such as , which compensates for 's in mildly processed beverages and extends its utility in reduced-sugar products. These combinations have supported sugar reduction in pharmaceuticals, such as chewable tablets and syrups, and contributed to the post-1980s boom in global low-calorie offerings by enabling viable no-sugar formulations in high-volume categories like soft drinks.

Branded Consumer Products

The Equal brand of tabletop sweetener packets, containing under the NutraSweet trademark, was introduced in 1982 in the and shortly after FDA approval for such uses in 1981. Food and beverage manufacturers licensed the distinctive NutraSweet logo—a red and white swirl—for display on packaging of products sweetened with the ingredient, such as sodas and other low-calorie items, to signify its inclusion starting from the early 1980s. Internationally, the brand emerged as the primary equivalent for -based tabletop sweeteners, particularly in , with formulations available in tablet, granular, and stick forms tailored to regional preferences and regulatory requirements, including mandatory phenylalanine warnings for individuals with (PKU). Following Monsanto's 2000 sale of its consumer aspartame brands to Merisant, the company maintained marketing of Equal and Canderel under licensed NutraSweet branding for tabletop and select formulated products, even as raw aspartame production was outsourced to suppliers, preserving the trademark's association with the sweetener through at least the mid-2000s.

Safety Evaluations and Regulatory Status

Metabolic Effects and Approved Limits

Aspartame undergoes rapid hydrolysis in the into its three primary metabolites: L-phenylalanine (approximately 50% by weight), L-aspartic acid (40%), and (10%). These components are absorbed into the bloodstream and metabolized via pathways identical to those for phenylalanine and aspartic acid from dietary proteins and from endogenous or dietary sources. The metabolite is further oxidized to and then , which is primarily excreted in the urine or exhaled as , with plasma levels remaining well below those from natural dietary exposures such as (where methanol content is six times higher than from an equivalent aspartame-sweetened diet cola) or . In individuals without phenylketonuria (PKU), these metabolites do not accumulate in the body, as they are efficiently utilized in protein synthesis, energy production, or eliminated through renal and respiratory routes, mirroring normal dietary processing. Studies confirm that even at doses exceeding typical consumption, itself is undetectable in circulating blood due to complete presystemic breakdown, preventing . Regulatory bodies have set the (ADI) for at 50 mg/kg body weight by the U.S. (FDA) and 40 mg/kg by the Joint FAO/WHO Expert on Additives (JECFA), with JECFA reaffirming the 40 mg/kg level in its 2023 evaluation based on extensive toxicological data. For an average 70 kg adult, the JECFA ADI corresponds to roughly 2,800 mg daily, equivalent to 9–14 cans of (assuming 180–200 mg per 355 ml can, varying by formulation). These thresholds incorporate safety margins of 100-fold or greater from no-observed-adverse-effect levels in animal and human studies, accommodating the rapid metabolic clearance observed.

Key Regulatory Decisions by FDA, WHO, and Others

The U.S. (FDA) approved for use as a general-purpose on July 24, 1981, following reviews by public boards of inquiry that evaluated data submitted by the petitioner, G.D. Searle & Company. This initial approval permitted its incorporation into various dry foods, with subsequent expansions including carbonated beverages in 1983 and further uses leading to general-purpose status in 1996 after additional petitions and assessments. The FDA has since denied multiple citizen petitions seeking revocation, maintaining that poses no concerns under approved conditions of use, with an (ADI) of 50 mg/kg body weight. In July 2023, the International Agency for Research on Cancer (IARC), part of the (WHO), classified as Group 2B—"possibly carcinogenic to humans"—based on limited evidence of in humans from two cohort studies and limited evidence in experimental animals, emphasizing this as a rather than a at typical exposure levels. Concurrently, the FAO/WHO Committee on Additives (JECFA) reaffirmed aspartame's , upholding the ADI of 40 mg/kg body weight and concluding no health concerns from dietary exposures under current use patterns, as these remain below levels associated with any potential effects in reviewed data. The FDA echoed this position, stating that the IARC classification does not alter its determination of no convincing evidence of risk at the ADI, given the absence of causal links in human or consistent animal findings at relevant doses. The (EFSA) conducted a comprehensive re-evaluation in 2013, confirming 's safety for the general population excluding infants, with no genotoxic or carcinogenic concerns identified; it retained the ADI at 40 mg/kg body weight, deeming exposures from approved uses well below this threshold. has received regulatory approval for use in over 90 countries worldwide, reflecting aligned empirical reviews by national authorities that prioritize risk assessments over isolated hazard signals.

Health Research and Debates

Evidence from Large-Scale Studies

The U.S. and Drug Administration (FDA) reviewed over 100 studies on , encompassing clinical trials, animal , and epidemiological data, concluding no consistent of links to cancer, neurological disorders, or at intakes below the of 50 mg/kg body weight. Similarly, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 2023 evaluated aggregated epidemiological and reaffirmed no causal association with carcinogenicity or other adverse health outcomes, based on reviews of and case-control studies involving millions of participants. Large prospective studies, such as the NIH-AARP Diet and Health Study (enrolling 285,079 women and 295,593 men followed from 1995 to 2000), assessed exposure via artificially sweetened beverages and found no association with hematopoietic cancers, brain tumors, or overall mortality, even at higher consumption levels equivalent to multiple servings daily. A of 17 observational studies on artificial sweeteners, including , reported no elevated risk for most cancers, with relative risks near 1.0 (95% : 0.95-1.05) for overall malignancy, though a subgroup analysis noted a modest increase for urinary tract cancers in women ( 1.13, 95% : 1.02-1.25), potentially confounded by reverse causation in case-control designs. Rodent bioassays from the Ramazzini (2006-2008), involving Sprague-Dawley rats exposed lifelong to doses up to 2,000 mg/kg/day, reported dose-related increases in lymphomas, leukemias, and other tumors; however, these findings were limited by methodological concerns including non-standardized lifetime exposure protocols leading to high spontaneous tumor backgrounds (up to 70% in controls), dosing far exceeding human equivalents (over 1,000 times the ADI), and evidence of chronic inflammation or respiratory infections confounding results. Independent histopathological re-evaluations and regulatory panels, such as those by the , determined these studies did not meet standards and failed to replicate tumor signals under controlled conditions. Epidemiological data on neurological and reproductive endpoints similarly show null associations in large-scale human research; for instance, pooled analyses from cohorts like the offspring (n>3,000) and European Prospective Investigation into Cancer and Nutrition (, n>500,000) reported no dose-dependent effects on cognitive function, headaches, or seizure incidence attributable to , with odds ratios approximating 1.0 after adjusting for confounders like and comorbidities. Reproductive outcome studies, including meta-analyses of preconception and prenatal exposure in over 100,000 women, found no increased risks for , , or congenital anomalies linked to at typical exposures.

Claims of Adverse Effects and Rebuttals

Claims of adverse effects from consumption emerged in the 1970s and 1980s, shortly after its initial FDA approval in for limited use, with and preliminary studies alleging links to , , , and other neurological symptoms. These claims often stemmed from self-reported surveys among sensitive individuals, such as a 1987 study where triggered in 33% of participants who already reported headache susceptibility, compared to 24% on , though no significant differences occurred in headache duration or general population incidence. allegations similarly relied on and uncontrolled observations, lacking robust causal links in controlled human trials. Cancer-related claims gained traction from , particularly high-dose rodent experiments by the Ramazzini Institute in 2006 and 2007, which reported dose-related increases in lymphomas, leukemias, and other tumors after lifelong exposure starting prenatally at levels equivalent to heavy human consumption. Proponents argued that aspartame's breakdown into , which metabolizes to —a known and —could accumulate and cause DNA damage or oncogenic effects, extrapolating from methanol's toxicity at acute high doses. However, such claims frequently involved extrapolations from doses far exceeding human exposure; for instance, Ramazzini rats received up to 2,000 mg/kg body weight daily, over 40 times the FDA's (ADI) of 50 mg/kg. Rebuttals emphasize dose-response principles and pharmacokinetic data, noting that aspartame-derived methanol yields blood levels of about 0.34 mg/dL after a 50 mg/kg dose—well below toxic thresholds and comparable to or lower than endogenous production or levels from juices. from aspartame at the ADI contributes only 0.3-0.4% to total endogenous formaldehyde turnover, rapidly detoxified by cellular mechanisms, rendering accumulation implausible at realistic intakes. For cancer, independent analyses, including those by the and Joint FAO/WHO Expert Committee on Food Additives (JECFA), found no consistent evidence, attributing findings to methodological flaws like poor histopathological controls and non-relevant dosing, with epidemiological studies showing no elevated risk even among high consumers. Neurological claims similarly fail causal criteria, as double-blind trials in non-sensitive populations detect no effects, and self-reported associations likely reflect responses or rather than direct toxicity. Allegations of industry influence, particularly Monsanto's (then G.D. Searle) during FDA approvals in the —including claims of political pressure via figures like —have fueled skepticism, with critics citing delayed scrutiny of early Searle studies showing brain tumors in rats. Yet, subsequent independent reviews by bodies like the (EFSA) and over 100 FDA-evaluated studies, including post-approval surveillance, upheld integrity and reaffirmed safety, attributing approvals to reproducible rather than solely . While source credibility concerns persist—given potential conflicts in industry-funded early research—causal evaluations prioritize empirical human exposure over contested models, where adverse outcomes require intakes 50-100 times the ADI to manifest.

Special Populations and Contraindications

Aspartame is contraindicated in individuals with (PKU), a genetic disorder impairing the metabolism of , one of aspartame's breakdown products; ingestion leads to phenylalanine accumulation, which can cause , seizures, and other neurological damage if unmanaged. The U.S. Food and Drug Administration (FDA) has required mandatory labeling on aspartame-containing products since its approval on July 24, 1981, stating "PHENYLKETONURICS: CONTAINS " to alert affected consumers and prevent exposure. In pregnant women and children, no causal evidence links consumption within the (ADI) of 40-50 mg/kg body weight to adverse outcomes, according to regulatory reviews by the (EFSA) and Joint FAO/WHO Expert Committee on Food Additives (JECFA). Observational studies have reported associations with or metabolic markers, but these lack control for confounders like overall diet and do not demonstrate causality in randomized trials or animal models at human-equivalent doses. For children, professional bodies such as the affirm safety within the ADI, with no verified risks beyond PKU. Reports of reactions, such as urticaria or attributed to , are rare and not reproducibly linked to the compound in controlled settings; double-blind, -controlled challenges show no greater incidence than . Regulatory evaluations by the FDA and EFSA find insufficient evidence to establish as an , attributing most claims to effects or unrelated factors rather than direct causation.

References

  1. [1]
    Aspartame and Other Sweeteners in Food - FDA
    Feb 27, 2025 · Aspartame is approved for use in food as a sweetener. Aspartame brand names include Nutrasweet®, Equal®, and Sugar Twin®. It contains calories, ...
  2. [2]
    Aspartame | C14H18N2O5 | CID 134601 - PubChem - NIH
    Aspartame is the methylester of a dipeptide composed of two amino acids, phenylalanine and aspartic acid. When these two amino acids are so combined to form ...
  3. [3]
    Aspartame—True or False? Narrative Review of Safety Analysis of ...
    Jun 7, 2021 · Aspartame is a sweetener introduced to replace the commonly used sucrose. It was discovered by James M. Schlatter in 1965.
  4. [4]
    Timeline FDA Activities and Significant Events Addressing Aspartame
    May 30, 2023 · The FDA approved the use of aspartame as a general-purpose sweetener in response to a petition from NutraSweet (formerly Searle). This ...Missing: definition | Show results with:definition
  5. [5]
    Artificial Sweeteners and Cancer - NCI
    Aug 29, 2023 · The results of these studies showed no evidence that these sweeteners cause cancer or other harms in people.
  6. [6]
    Aspartame hazard and risk assessment results released
    Jul 14, 2023 · IARC classified aspartame as possibly carcinogenic to humans (IARC Group 2B) and JECFA reaffirmed the acceptable daily intake of 40 mg/kg body weight.
  7. [7]
    Aspartame - an overview | ScienceDirect Topics
    In 1965, a scientist called James Schlatter working at the G.D. Searle research laboratories accidentally discovered aspartame while working to develop a ...
  8. [8]
    Sweet Success: How NutraSweet Created a Billion Dollar Business
    Searle changed NutraSweet from a drug-related use to a food use in 1974, when the FDA granted approval for aspartame for dry use. An international alliance ...
  9. [9]
    [PDF] Aspartame: A Sweet Toxin? - Touro Scholar
    The discovery of aspartame was accidental. In 1965, James M. Schlatter discovered this chemical as he was trying to produce an anti-ulcer drug candidate for G. ...<|separator|>
  10. [10]
    [PDF] Aspartame
    Apr 3, 1998 · profound sucrose (table sugar) like taste...Preliminary tasting showed this compound to have a potency of 100-200 times sucrose depending on.
  11. [11]
    [PDF] Food Additive Approval Process Followed for Aspartame
    Jun 18, 1987 · G.D. Searle and Co.1 began developing aspartame-a sweetener about. 180 times as sweet as sugar-in 1965. It is a white, odorless ...
  12. [12]
    [PDF] Aspartame ma review William F. Waggoner, DDS, MS - AAPD
    A dipeptide based on two naturally occurring amino acids, aspartame is digested like a protein by the body and is 180-200 times as sweet as sucrose. The ...
  13. [13]
    Aspartame Safety as a Food Sweetener and Related Health Hazards
    Within this review, we critically evaluate reports concerning the safety of aspartame. Some studies evidenced subtle mood and behavioral changes upon daily high ...
  14. [14]
    First Experimental Demonstration of the Multipotential Carcinogenic ...
    Two long-term feeding carcinogenicity bioassays on APM were performed on rats and one on mice in the early 1970s by the producer Searle & Co. Results were ...
  15. [15]
    [PDF] The History of Aspartame - Harvard DASH
    Mere mention of the word aspartame or its brand names, NutraSweet and Equal, engenders a vide variety of reactions amongst consumers.Missing: definition | Show results with:definition
  16. [16]
    [PDF] Federal Register / Vol. 46, No. 142 / Friday, July 24, 1981 / Proposed ...
    Jul 24, 1981 · On July 26,1974, FDA approved ... (a) Should aspartame be allowed for use in foods, or, instead should approval of aspartame be withdrawn?
  17. [17]
    PEPSI'S DIET SOFT DRINKS SWITCHED TO NUTRASWEET
    Nov 2, 1984 · Pepsi-Cola USA, the soft-drink unit of Pepsico Inc., said yesterday that it would stop using saccharin in its diet soft drinks and use only Nutrasweet.
  18. [18]
    MONSANTO TO ACQUIRE G. D. SEARLE - The New York Times
    Jul 19, 1985 · The Monsanto Company announced today that it would pay about $2.7 billion to acquire GD Searle & Company, the diversified drug company that makes aspartame, ...
  19. [19]
    Monsanto to Acquire G. D. Searle & Co. in $2.7-Billion Cash Deal
    Jul 19, 1985 · GD Searle & Co., maker of the successful sugar substitute NutraSweet, agreed Thursday to merge with chemical producer Monsanto Co. in a deal worth about $2.7 ...
  20. [20]
    History of NutraSweet Company – FundingUniverse
    In 1985 Searle was bought by Monsanto, which combined the NutraSweet and Equal operations into the NutraSweet Company, a wholly owned subsidiary of Monsanto.
  21. [21]
    NutraSweet sold for $440 million - UPI Archives
    J.W. Childs Equity Partners II L.P. Tuesday completed its purchase of the NutraSweet Co. from Monsanto for $440 million in cash....Missing: divestiture | Show results with:divestiture
  22. [22]
    COMPANY NEWS; MONSANTO SELLING SWEETENER ...
    Mar 28, 2000 · Last week, it completed the sale of its tabletop sweetener business, which also includes a NutraSweet brand, to Merisant Company. A version of ...
  23. [23]
    MONSANTO SELLING OFF SWEETENER BUSINESS – Chicago ...
    Last month the company sold off its consumer tabletop sweetener business, including NutraSweet and Equal, to Chicago-based Merisant Co. for $570 million in cash ...Missing: Associates | Show results with:Associates
  24. [24]
  25. [25]
    A Timeline of Our History | History | About the Ajinomoto Group
    Started to export aspartame to U.S.. 1983. Established NutraSweet AG (the present Ajinomoto Sweeteners Europe S.A.S.) in Swiss. 1984. DANONE Fresh Cheese.
  26. [26]
    Metabolism of aspartame and its L-phenylalanine methyl ester ...
    The data suggest that (1) APM is hydrolyzed to AspPhe and both APM and PME are hydrolyzed to their constituent amino acids and and methanol prior to entering ...
  27. [27]
    Characterization of the Binding Site of Aspartame in the Human ...
    Sep 15, 2015 · The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to ...
  28. [28]
    How aspartame is made - material, manufacture, making, history ...
    In general, phenylalanine is modified by a reaction with methanol and then combined with a slightly modified aspartic acid which eventually forms aspartame.
  29. [29]
    Aspartame - Safe Food Factory
    Dec 15, 2016 · Aspartame. The production process of aspartame. Fermentation; Isolation; Modification; Synthesis; Modification; Purification. Food Safety & ...The production process of... · Fermentation · Modification
  30. [30]
    Synthesis of Aspartame by Thermolysin: An X-ray Structural Study
    Apr 10, 2014 · We examined the PMPS of a precursor of the artificial sweetener aspartame, a multiton peptide synthesis catalyzed by the enzyme thermolysin.
  31. [31]
    Aspartame, methyleugenol, and isoeugenol - NCBI Bookshelf
    Aspartame can be synthesized by the coupling of the amino acids l-phenylalanine and l-aspartic acid, and the esterification of the carboxyl group of the ...<|separator|>
  32. [32]
    Ajinomoto Increases Aspartame Production Capacity in Japan and ...
    Dec 6, 2004 · The increased capacity will enable Ajinomoto, currently the market leader in aspartame manufacturing to supply more than half of the rapidly ...
  33. [33]
    What is Aspartame? | Amino Acids in Our Lives - Ajinomoto Group
    Aspartame is made by forming peptide bonds of aspartic acid and phenylalanine. It is then refined and dried. These peptide bonds are also formed when amino ...
  34. [34]
    Announcement of Sale of Shares of a Sweetener (Aspartame ...
    Ajinomoto Co. announces that today it decided to transfer all issued and outstanding shares of Ajinomoto Sweeteners Europe SAS (ASE) of France.
  35. [35]
    Aspartame Is Approved for Use in Carbonated Beverages - EBSCO
    The most widely used sweetener is sugar, or sucrose. ... Schlatter when he licked his fingers during an experiment, aspartame is 180 times as sweet as sugar.Missing: initial | Show results with:initial
  36. [36]
    Aspartame: Implications for the Food Scientist - ResearchGate
    Aspartame is most stable between pH values of 3 and 5, even with increasing temperature. 3 However, it breaks down and loses its sweetness in normal cooking or ...Missing: limitations | Show results with:limitations
  37. [37]
    Beyond Sugar: A Holistic Review of Sweeteners and Their Role in ...
    At higher temperatures, the rate of aspartame decomposition increases ... It is heat-labile and not ideal for cooking or baking, though its shelf life ...
  38. [38]
    The Combined Effects of Aspartame and Acesulfame-K Blends on ...
    Sep 3, 2022 · Aspartame (Asp) and acesulfame-K (Ace-K) are nonnutritive sweeteners (NNSs) commonly used in combination to replace added sugars in reduced- ...
  39. [39]
    The Sweetness Technology of Sugar Substituted Low-Calorie ...
    Aspartame (added either singly or in a blend) and acesulfame-K (added in a mixture) were stable in the beverage under the refrigerated condition for 15 days. ...
  40. [40]
    [PDF] Certain Acesulfame Potassium and Blends and Products Containing ...
    is stable in heat, and there is a better flavor if acesulfame potassium is blended with sugar or aspartame. Sacks Tr. 167-168,. 188-189. 168. They also ...
  41. [41]
    Sugar Substitute : NutraSweet: A Big Taste of Success
    Apr 12, 1985 · NutraSweet's increased use in consumer products stems in part from its greater availability, which has brought its price down. Soft drink makers ...
  42. [42]
    About Equal
    Inadvertently, he had discovered aspartame, an ingredient that would revolutionize the category of “sweetener” and would be the main sweetening ingredient in ...
  43. [43]
    NutraSweet Company
    When it created the name NutraSweet in 1983, a logo--a red and white swirl--was designed to go along with it. Searle spent $40 million advertising NutraSweet, ...Missing: licensed | Show results with:licensed
  44. [44]
    Canderel - History, Types, Taste and Safety - Diabetes UK
    Canderel is an artificial sweetener that is used by thousands of people ... There are currently 3 different products available under the Canderel brand.Missing: NutraSweet international variants
  45. [45]
    Everything You Need to Know About Aspartame - IFIC
    Dec 4, 2020 · Aspartame Consumption for 12 Weeks Does Not Affect Glycemia, Appetite, or Body Weight of Healthy, Lean Adults in a Randomized Controlled Trial.
  46. [46]
    Merisant Worldwide, Inc. - Company-Histories.com
    1981: Aspartame receives FDA approval; Equal brand is launched in U.S. consumer market; NutraSweet is marketed to food, beverage, and pharmaceutical industries ...
  47. [47]
    Bitter battle in world of sweeteners - Chicago Tribune
    Aug 11, 2007 · Merisant was allowed to use the NutraSweet brand for one of its own tabletop sweeteners. In return Merisant had to buy at least 200 tons of raw ...
  48. [48]
    Biological fate of low-calorie sweeteners | Nutrition Reviews
    Oct 15, 2016 · Methanol from aspartame enters the portal circulation and is quickly metabolized to formaldehyde by catalase-peroxidase (in rodents) or alcohol ...
  49. [49]
    [PDF] COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER ...
    It was noted that ”The amount of methanol contributed to the diet by aspartame is very low compared with that from other foods eg one pint of orange juice ...
  50. [50]
    What happens when we consume low calorie sweeteners?
    Because aspartame is digested just like other food, it is caloric. However, because it is so sweet it is used in tiny quantities, so the calories contributed ...
  51. [51]
    Aspartame and Cancer Risk | American Cancer Society
    Jul 25, 2023 · Aspartame (NutraSweet ... aspartame are regulated by the FDA. These products must be tested for safety and approved by the FDA before they can be ...What is aspartame? · Does aspartame cause cancer? · Is aspartame regulated?<|separator|>
  52. [52]
    Opinion on the re-evaluation of aspartame (E951) as a food additive
    Dec 10, 2013 · The Panel concluded that aspartame was not of safety concern at the current aspartame exposure estimates or at the ADI of 40 mg/kg bw/day.
  53. [53]
    Artificial sweeteners and cancer risk: Results from the NutriNet ...
    Aspartame intake from ASBs was assessed in the NIH-AARP Diet and Health Study cohort [16], and no association with hematopoietic and brain cancers was revealed.
  54. [54]
    The relationship between the use of artificial sweeteners and cancer
    Our meta‐analysis found that these is no correlation between artificial sweeteners and occurrence of cancer except urinary system cancer in women. Considering ...
  55. [55]
    Systematic review and evaluation of aspartame carcinogenicity ...
    The Ramazzini Institute used a lifetime model of their own design that has been questioned due to high rates of spontaneous tumors, issues with tumor type ...Missing: critiques | Show results with:critiques
  56. [56]
    EFSA assesses new aspartame study and reconfirms its safety
    May 4, 2006 · The data from the new study on aspartame presented in the European Ramazzini Foundation's publications[4] were insufficient for the AFC Panel ...Missing: critiques flaws
  57. [57]
    Aspartame Issues and Concerns - Extoxnet
    The only ill effect that has been established through a controlled study was an increase in headaches among a group who self-reported headaches after ingestion ...Missing: adverse cancer
  58. [58]
    Aspartame and cancer – new evidence for causation
    Apr 12, 2021 · They confirm the very worrisome finding that prenatal exposure to aspartame increases cancer risk in rodent offspring. They validate the ...Missing: harm | Show results with:harm
  59. [59]
    Formaldehyde derived from dietary aspartame binds to tissue ...
    Whereas large doses of methanol are very toxic in humans, moderate levels are present in many foods, and methanol can also be produced by certain species of ...
  60. [60]
    Endogenous formaldehyde turnover in humans compared with ...
    Feb 18, 2014 · At the current ADI of 40 mg/kg bw per day for aspartame, formaldehyde would be approximately 4 mg/kg bw per day and represent only 0.3-0.4 % of ...<|separator|>
  61. [61]
    The Truth About Aspartame Side Effects - Healthline
    Jun 23, 2022 · Aspartame is a non-nutritive sweetener (NNS). It has not been conclusively linked with any serious side effects or health problems.
  62. [62]
    Former Head Of FDA Says 'Rumsfeld Has A Lot To Answer ... - Yahoo
    Oct 25, 2016 · ' The FDA had previously banned aspartame based on this finding, only to have then-Searle Chairman Donald Rumsfeld vow to 'call in his markers,' ...
  63. [63]
    Does aspartame have health risks? Here's what studies ... - CBS News
    Jul 13, 2023 · "To determine the safety of aspartame, the FDA has reviewed more than 100 studies designed to identify possible toxic effects, including studies ...
  64. [64]
    [PDF] Scientific Opinion on Aspartame - EFSA
    1. What is aspartame? The food additive aspartame is a low-calorie, artificial sweetener - approximately 200 times sweeter than sugar.Missing: value | Show results with:value
  65. [65]
    Aspartame - WHO | JECFA
    JECFA determined that dietary exposure estimates to aspartame at the mean of up to 10 mg/kg bw per day for children and 5 mg/kg bw per day for adults, and for ...
  66. [66]
    Effects of prenatal artificial sweeteners consumption on birth outcomes
    The results of the meta-analysis suggest daily consumption of AS during pregnancy increases the risk of preterm delivery by 18 % compared with an absence of AS ...
  67. [67]
    Artificial sweetener use among children - PubMed Central - NIH
    With regard to children specifically, the ADA stated that artificial sweeteners are safe to use within the range of the acceptable daily intake (ADI), which ...
  68. [68]
    A combined single-blind, double-blind, placebo-controlled ... - PubMed
    A combined single-blind, double-blind, placebo-controlled study to determine the reproducibility of hypersensitivity reactions to aspartame. J Allergy Clin ...
  69. [69]
    Aspartame is no more likely than placebo to cause urticaria ...
    These results indicate that aspartame and its conversion products are no more likely than placebo to cause urticaria and/or angioedema reactions.Missing: trials | Show results with:trials