Fact-checked by Grok 2 weeks ago

Deep eutectic solvent

Deep eutectic solvents (DESs) are fluid mixtures typically formed by combining two or three inexpensive components, often safe for common formulations—such as a acceptor (e.g., a ammonium salt like ) and a donor (e.g., , , or a metal halide)—through intermolecular interactions, primarily , that result in a with a significantly depressed lower than that of any individual component. These solvents remain liquid at temperatures below 100 °C, often at or near , and were first reported in 2001 by and colleagues using and . DESs exhibit physicochemical properties akin to those of room-temperature ionic liquids but are distinguished by their simpler from readily available that are often biodegradable and low-toxicity, especially in bio-based variants, making them a greener alternative for various applications. Key characteristics include low volatility, high thermal stability, tunable polarity and (which can be adjusted by adding or varying component ratios), wide liquidus ranges, and high for diverse solutes such as metal salts, compounds, and biomolecules. They generally possess high densities, moderate conductivity, and non-flammable natures, though their elevated viscosities compared to conventional solvents can sometimes limit in processes. Classified into types based on composition, DESs include Type I (quaternary ammonium salts with metal halides), Type II (with hydrated metal halides), Type III (with donors like amides or alcohols, often natural deep eutectic solvents or NADES), and Type IV (metal halides with urea derivatives); hydrophobic variants and therapeutic DESs (THEDES) have also emerged for specialized uses. Their applications span and processing, , of bioactive compounds (e.g., phenolics and from natural sources), capture, biotransformations, and pharmaceutical formulations for enhanced and delivery. Ongoing research emphasizes their eco-friendly profile and versatility in sustainable chemistry, with as of 2025 advancements including responsive DES and expanded uses in pretreatment and sensors.

Definition and Fundamentals

Definition

Deep eutectic solvents (DESs) are eutectic mixtures formed from or Brønsted acids and bases that contain a network, resulting in significant depression of the freezing point compared to the individual components. These mixtures typically involve a , such as , complexed with a donor like or a metal , where the interactions delocalize charges and stabilize the state at lower temperatures. A classic example is the 1:2 molar ratio mixture of (decomposition point 302°C) and ( 133°C), which forms a clear with a of approximately 12–25°C, depending on water content (e.g., 12°C with ~0.65 wt% water, 23–25°C for low-water conditions) due to the extensive hydrogen bonding between the chloride anion and urea molecules. Unlike ionic liquids, which are pure salts composed of discrete ions, DESs are multicomponent mixtures that exhibit similar physical properties but are easier and cheaper to prepare without the need for purification. In contrast to volatile solvents, DESs possess low and are non-flammable, enhancing their safety in applications. General advantages of DESs include their tunability through component selection, low , and biodegradability, making them attractive "green" alternatives in chemical processes.

Eutectic Behavior

Eutectic mixtures consist of two or more components that, upon mixing, exhibit a in their where the curves intersect, resulting in a sharp lower than that of either pure component. This depression arises from intermolecular interactions that stabilize the liquid phase relative to the crystalline , preventing solidification until a lower is reached. In the context of deep eutectic solvents (DES), these interactions lead to a pronounced eutectic behavior, forming a over a wide range, often at or near . The primary mechanism for in DES involves between a acceptor (typically a quaternary ammonium salt) and a donor (such as a or ), which disrupts the ordered structure of the individual components. In ionic components like , with the donor delocalizes the charge on anions, effectively reducing the of the ionic solid and lowering the energy barrier for . This disruption is particularly evident in Type I and Type III DES, where coordination between the donor and ionic species prevents recrystallization, enhancing the depth of the eutectic. For ideal eutectic mixtures, the can be approximated using colligative property principles derived from the equality of s between the and phases. Consider a binary mixture where component 1 (the ) has a pure T_m, \Delta H_f, and x_1 in the . At the depressed T = T_m - \Delta T, the of pure component 1 equals that in the : \mu_1^\text{solid}(T) = \mu_1^\text{liquid}(T). The is \mu_1^\text{solid}(T) = \mu_1^\text{liquid}(T_m) - \int_T^{T_m} \frac{\Delta H_f}{T'} dT', assuming constant \Delta H_f. Approximating the as \Delta H_f \ln(T_m / T) and using the \mu_1^\text{liquid}(T) = \mu_1^\text{liquid}(T_m) + RT \ln x_1, the equation simplifies to \Delta H_f \ln(T / T_m) = RT \ln x_1. For small \Delta T, \ln(T / T_m) \approx -\Delta T / T_m, yielding \Delta T = -\frac{R T_m^2}{\Delta H_f} \ln x_1. Since x_1 = 1 - x_2 and for small solute mole fraction x_2, \ln x_1 \approx -x_2, the ideal depression becomes \Delta T \approx \frac{R T_m^2}{\Delta H_f} x_2, where R is the . This equation illustrates the scale of depression in ; for example, in a choline chloride-urea at a 1:2 (x_2 \approx 0.67), the observed \Delta T exceeds 100°C compared to the components' points, though non-ideal interactions amplify the effect beyond the ideal prediction. Factors influencing the eutectic depth include the optimal component , which determines the at the eutectic point and maximizes stabilization, as well as the nature of interactions—stronger hydrogen bonding or ionic delocalization yields deeper depressions than weaker van der Waals forces, while molecular donors promote more pronounced effects in ionic systems than in purely molecular ones.

Classification and Types

Conventional DES

Conventional deep eutectic solvents (DES) are synthetic mixtures classified into four main types based on their component compositions, primarily involving quaternary ammonium salts, metal chlorides, or donors (HBDs). This classification, introduced by and colleagues, highlights their structural diversity and tunability for various synthetic applications. Type I DES consist of a quaternary ammonium salt, such as (ChCl), combined with a metal like ZnCl₂ or AlCl₃. A representative example is ChCl:ZnCl₂ at a 1:2 molar ratio, which forms a stable liquid at suitable for acid-catalyzed syntheses, such as Diels-Alder reactions, though these mixtures can be sensitive to due to the anhydrous metal salts. Type II DES incorporate a quaternary ammonium salt with a hydrated metal , exemplified by ChCl:CrCl₃·6H₂O at a 1:2 molar ratio ( to the hexahydrate). These are notably air- and moisture-stable, enabling their use in metal and esterification reactions without degradation. Type III DES are metal-free and formed by a quaternary ammonium salt paired with an HBD, such as urea or glycerol; common examples include ChCl:urea (1:2 molar ratio) and ChCl:glycerol (1:2 molar ratio), both exhibiting good thermal stability and low toxicity for applications in N-alkylation and biodiesel-related syntheses. Type IV DES involve a metal chloride hydrate mixed with an HBD, without quaternary ammonium salts; a typical formulation is ZnCl₂:urea at a 1:3.5 molar ratio, which provides moderate stability and is employed in processes like aluminum plating and certain carbonylation reactions. A more recent addition to the is Type V DES, which are formed by non-ionic acceptors (HBAs) and donors (HBDs), such as monoterpenoids (e.g., : at 1:1 molar ratio) or fatty acids with (e.g., decanoic acid: at 1:1), without halides or metals. These are often hydrophobic, enabling applications in non-aqueous environments like oil-water separations, and represent a greener, chloride-free . Compared to traditional ionic liquids, conventional DES offer advantages in cost-effectiveness, as their components are inexpensive and commercially available, and ease of tuning physicochemical properties through simple variation of molar ratios or component selection.

Natural Deep Eutectic Solvents

Natural deep eutectic solvents (NADES) are eutectic mixtures composed of two or more natural metabolites that form a phase at temperatures below the melting points of their individual components, serving as a sustainable alternative to conventional solvents. These solvents typically include bio-based compounds such as sugars (e.g., glucose, , ), organic acids (e.g., , malic acid, ), (e.g., ), and choline derivatives, often combined with as a third component to achieve the eutectic mixture. NADES were first conceptualized in 2011 by Choi et al. as a means to solubilize plant metabolites that exhibit poor water solubility, such as rutin and paclitaxel, thereby addressing gaps in understanding cellular metabolism and physiology. Representative examples include glucose:choline chloride:water in a 1:1:1 molar ratio and citric acid:choline chloride in 1:2 or 1:3 ratios, which demonstrate the formation of stable liquids through hydrogen bonding interactions. Another example is betaine:sorbitol:water (1:1:3 molar ratio), a ternary mixture that highlights the versatility of quaternary ammonium salts like betaine as hydrogen bond acceptors in NADES formulations. Water plays a crucial role in NADES by being strongly retained within the mixture (often up to 6-30% by weight), enhancing thermodynamic stability and mimicking the hydrated intracellular fluids found in living organisms, where it facilitates enzyme activity and metabolite dissolution without evaporation under vacuum. This hydration aspect positions NADES as analogs to cellular compartments, potentially representing a third liquid phase alongside water and lipids in biological systems. Compared to conventional deep eutectic solvents, NADES offer superior environmental benefits due to their derivation from renewable natural sources, resulting in low toxicity profiles and high biodegradability, which minimize ecological impacts in applications. These attributes make NADES particularly advantageous for sustainable processes, as they degrade readily in the environment without persistent residues.

Hydrophobic and Therapeutic DES

Hydrophobic deep eutectic solvents (HDES) are a specialized class, often based on Type V formulations using long-chain fatty acids or (e.g., :decylamine 1:1), which are immiscible with water and useful for extracting non-polar compounds or in biphasic systems. Therapeutic deep eutectic solvents (THEDES) incorporate active pharmaceutical ingredients () with safe co-formers (typically Type III-like), enhancing drug and delivery while maintaining .

History

Discovery and Early Development

The discovery of deep eutectic solvents (DES) traces back to 2001, when Andrew P. Abbott and colleagues at the reported the formation of low-melting eutectic mixtures by combining quaternary ammonium salts, such as , with (ZnCl₂). These mixtures displayed significantly depressed freezing points—down to 23–25 °C for certain compositions—compared to the high melting points of the individual components ( at 302 °C and ZnCl₂ at 290 °C), enabling liquid states at or near . This work laid the groundwork for DES as a class of analogs, highlighting their potential as moisture-stable, Lewis-acidic media for chemical processes. In 2003, Abbott's group expanded on this by demonstrating that a 1:2 molar mixture of and formed a clear, stable at ambient temperatures, with a of 12 °C. Dubbed "Reline," this solvent exhibited novel properties, including the ability to dissolve metal oxides like ZnO and CuO at elevated temperatures, making it suitable for metal processing applications such as and . Early experiments focused on its use in electrochemical environments, where it supported the dissolution of metals and facilitated processes like the of from ZnCl₂-based systems. From 2003 to 2010, research positioned as economical alternatives to traditional s, which originated with Paul Walden's 1914 synthesis of ethylammonium nitrate as the first room-temperature . DES offered advantages in cost and simplicity, using inexpensive, biorenewable components without requiring purification steps typical of s. Initial applications emphasized and ; for instance, Abbott et al. in 2004 explored DES formed with carboxylic acids for metal oxide solubility, enabling selective and potential scenarios. By the mid-2000s, studies demonstrated DES utility in aluminum-related , achieving deposits with high purity and efficiency in choline chloride-based media. However, early investigations consistently noted challenges, including high viscosities (often exceeding 100 mPa·s at ), which limited mass transport and practical scalability in electrochemical setups.

Key Milestones and Evolution

Building upon the early foundational research by and colleagues on choline chloride-based eutectic mixtures, the field of deep eutectic solvents (DES) saw significant diversification in the through the introduction of bio-derived and environmentally benign variants. A pivotal advancement occurred in 2011 with the proposal of natural deep eutectic solvents (NADES), introduced by Choi et al. as mixtures of natural metabolites such as sugars, , and organic acids that form eutectic liquids at ambient temperatures, enabling efficient extraction of natural products like and alkaloids from plant matrices without toxic residues. This innovation shifted focus toward biocompatible solvents, expanding DES applicability in extraction processes for bioactive compounds. The year 2014 marked a surge in research interest following the comprehensive review by Smith et al., which systematically outlined DES formation mechanisms, physicochemical properties, and diverse applications ranging from metal to , thereby establishing DES as viable alternatives and catalyzing over a decade of subsequent studies. In the mid-2010s, research expanded to hydrophobic DES formulations, exemplified by Florindo et al.'s 2017 development of stable, water-immiscible systems using decanoic acid as the hydrogen bond donor paired with quaternary ammonium salts like , which demonstrated low water solubility (~0.3 wt%) and enabled extraction of pollutants such as pesticides from aqueous streams. Concurrently, Type IV DES—comprising metal chloride hydrates (e.g., ZnCl₂·3H₂O) with hydrogen bond donors like —gained traction for their tunable and in electrochemical applications, while efforts toward metal-free variants emerged to enhance , such as carbohydrate-based eutectics reported around 2019 that avoided metallic components entirely. From 2019 to 2022, DES research emphasized , particularly in processing, where choline chloride-oxalic mixtures achieved up to 58% delignification of lignocellulosic feedstocks like wheat straw under mild conditions, facilitating enzymatic for production. This period also featured key EU-funded initiatives under Horizon 2020, such as the NADES4CP project (2017–2021), which developed temperature- and halide-enhanced DES for scalable processes, including CO₂ capture and biocatalysis, underscoring DES as green alternatives to volatile organic compounds. Post-2022, advancements included the development of responsive deep eutectic solvents (RDES) with switchable properties for controlled separations and , as highlighted in 2024 reviews, further integrating DES into applications.

Preparation

Synthesis Methods

Deep eutectic solvents (DESs) are typically prepared by combining a hydrogen bond acceptor, such as a quaternary ammonium salt like , with a hydrogen bond donor, such as or a , in specific molar ratios to form a homogeneous phase. The most common synthesis method is the heating approach, where the components are mixed and heated to temperatures between 50°C and 100°C under constant stirring until a clear, stable forms, often within 1-2 hours depending on the mixture. This method relies on the formation of hydrogen bonds that depress the below that of the individual components, avoiding thermal degradation by keeping temperatures below the limits of the constituents. For instance, the prototypical DES known as "reline" is synthesized by mixing and in a 1:2 ratio at around 80°C, resulting in a colorless with a of 12°C. Mechanochemical methods provide non-thermal alternatives, particularly suitable for heat-sensitive components. These include grinding the solid components together at until a homogeneous forms, or using continuous processes like twin-screw for scalable production. For example, reline can be prepared by grinding and (1:2) without heating, achieving high-purity DES in minutes. Twin-screw enables efficient, solvent-free in multi-kg/h quantities, with precise control over parameters like screw speed and to maintain eutectic composition. Non-heating methods are employed for heat-sensitive components, particularly in natural deep eutectic solvents (NADES), to prevent degradation. In , the components are first dissolved in a volatile like to form an , which is then subjected to reduced pressure and mild heating (below 50°C) to remove the , yielding the DES as a residue. This technique is suitable for hydrophilic DESs and ensures high purity by minimizing exposure to elevated temperatures. Alternatively, freeze-drying involves preparing an of the components, freezing it at temperatures as low as -77°C, and then sublimating the under to obtain the DES directly, which is particularly effective for NADES containing sugars or . Scalability of DES synthesis can be achieved through batch or continuous processes, with batch methods being simpler for laboratory-scale using standard glassware, while continuous systems enhance for applications by allowing precise over mixing and . In batch processes, small volumes (e.g., 100 mL to liters) are prepared in stirred reactors, but scaling up requires attention to and uniformity to maintain the eutectic . Continuous , such as in reactors or twin-screw extruders, has been demonstrated for high-purity DESs like choline chloride-based mixtures, achieving rates up to multi-kg/h with reduced input and consistent . Purity is critical in both approaches, as impurities can shift the eutectic point and alter properties; thus, high-grade reagents and post-synthesis are recommended to achieve below 0.5 wt% and avoid . Safety considerations during DES preparation emphasize the low volatility and non-flammability of most formulations, reducing risks compared to traditional organic solvents, though handling quaternary salts requires gloves and to avoid . Equipment typically includes magnetic stirrers or overhead mixers for , oil baths or hot plates for heating under inert atmospheres (e.g., ) to protect air-sensitive components, and rotary evaporators or freeze-dryers for non-thermal methods, ensuring operations in well-ventilated fume hoods.

Characterization Techniques

Characterization of deep eutectic solvents (DES) involves a suite of analytical techniques to confirm their formation through eutectic , verify intermolecular interactions, and evaluate key physicochemical properties such as and behavior. These methods are crucial for distinguishing true DES from simple mixtures and ensuring their suitability for applications. Thermal, spectroscopic, electrochemical, and rheological analyses are standard, often applied post-synthesis to assess purity and homogeneity. Thermal analysis employs differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) to probe phase transitions and stability. DSC measures the melting point and glass transition temperature, revealing significant depressions (often 50–200 K) from ideal eutectic behavior, which confirms the non-ideal interactions defining DES formation; for example, in choline chloride-urea systems, DSC identifies the eutectic melting point at approximately 12 °C. TGA assesses thermal decomposition by monitoring mass loss, typically showing onset temperatures of 135–250°C for common DES like those based on choline chloride and organic acids, indicating good short-term stability under heating. These techniques together establish the temperature range for DES usability without phase separation or degradation. Spectroscopic methods elucidate molecular-level interactions, particularly hydrogen bonding between hydrogen bond donors (HBD) and acceptors (HBA). Fourier-transform (FTIR) spectroscopy detects shifts in vibrational bands, such as broadening or shifting of O-H (around 3300 cm⁻¹) and C=O (1700–1750 cm⁻¹) stretches, confirming HBD-HBA complexation; in bromide-nonanoic acid mixtures, FTIR verifies bonding at optimal ratios. complements FTIR by highlighting symmetric vibrations less affected by dipole changes, revealing ion pairing and lattice disruption in DES like choline chloride-glycerol. (NMR) spectroscopy, including ¹H and ¹³C variants, probes component dynamics and interactions through perturbations and peak broadening, demonstrating restricted mobility in the liquid state; for instance, in menthol-based DES, NMR confirms integration via upfield shifts. Electrochemical techniques focus on to characterize ionic mobility. Electrochemical impedance spectroscopy (EIS) measures specific by applying an signal and analyzing the Nyquist plot, yielding values typically 0.1–10 mS/cm at 25°C for , influenced by viscosity and ion ; this verifies the solvent's electrolytic potential without issues. Lower conductivities in viscous arise from strong H-bond networks, as seen in choline chloride-ethylene glycol systems. Rheological analysis uses rotational viscometers to determine profiles under , essential for understanding and . DES exhibit high viscosities (10–5000 mPa·s at 25°C), often Newtonian but sometimes shear-thinning, decreasing exponentially with (e.g., activation energies of 30–60 kJ/mol); in TBAB-nonanoic acid DES, viscosity drops from 124 mPa·s at 1:1 ratio to 5 mPa·s at higher HBD content at 40°C, reflecting weakened interactions. These measurements guide dilution strategies to optimize handling.

Properties

Physical Properties

Deep eutectic solvents (DES) exhibit densities typically ranging from 1.0 to 1.5 g/cm³ at ambient temperatures, with values for common choline chloride (ChCl)-based DES falling between 1.12 and 1.24 g/cm³ at 298 K. These densities decrease with increasing temperature and can be influenced by water content, where small additions may slightly increase density due to hydrogen bonding interactions. Viscosity in DES is notably high, often spanning 10 to 1000 cP or more at room temperature, exceeding that of many ionic liquids; for instance, ChCl:ethylene glycol (1:2) has a viscosity of 36 cP, while ChCl:urea (1:2) reaches 632 cP at 298 K. This property is highly sensitive to temperature, decreasing exponentially per the Arrhenius model, and to water content, which can reduce viscosity by disrupting the hydrogen bond network. Ionic conductivity of DES generally lies in the range of 0.1 to 10 mS/cm at 298 , lower than conventional ionic liquids owing to the elevated that impedes mobility; examples include 0.75 mS/cm for ChCl: (1:2) and 7.61 mS/cm for ChCl: (1:2). increases with as drops. DES possess near-negligible , often below 1 mmHg (or ~0.13 kPa), contributing to their low volatility and environmental stability; for instance, certain DES mixtures show pressures of 2–60 (0.015–0.45 mmHg) at 343–393 . Surface tension values for DES are typically 40–60 mN/m at ambient conditions, though some reach up to 77 mN/m depending on composition, decreasing with temperature; ChCl:ethylene glycol (1:2) measures 49 mN/m at 298 K. Thermal stability is robust, with many DES exhibiting decomposition onset temperatures above 200°C as determined by thermogravimetric analysis; ChCl-based DES with hydrogen bond donors like urea or glycerol often surpass this threshold. The physical properties of DES are highly tunable through adjustments in the acceptor (HBA) to donor (HBD) molar ratios, allowing optimization for specific applications. For example, in ChCl:D-fructose, drops from 14,347 (1:1) to lower values with higher ratios. The following table summarizes properties for select common DES at 298 K:

Chemical Properties

Deep eutectic solvents () generally exhibit robust thermal , with many compositions, such as choline chloride:urea (1:2 molar ratio), remaining stable up to temperatures exceeding 200°C before significant occurs. Hydrolytic varies by type; type III DES, formed from quaternary ammonium salts and donors like or , show high resistance to -induced degradation due to their non-reactive nature, though acidic variants like choline chloride: may experience reduced long-term , which can be mitigated by controlled addition. The of DES is often neutral to basic, typically ranging from 7 to 10 for choline chloride-based systems, and can be tuned by adjusting the donor:acceptor ratio or selecting acidic/basic components, with values decreasing linearly at higher temperatures. Solubility in DES is predominantly favorable for polar compounds, driven by extensive hydrogen bonding networks that enable effective dissolution of metal oxides, salts, and polar organics such as phenolic acids and alkaloids, often surpassing that in traditional ionic liquids. Non-polar compounds exhibit limited solubility in hydrophilic DES due to polarity mismatches, but hydrophobic DES, exemplified by :decanoic acid, improve non-polar uptake through tailored lipophilicity. Solvatochromic parameters further characterize this behavior; Kamlet-Taft coefficients for ammonium-based DES with carboxylic acids yield α (hydrogen bond acidity) values of 0.84–1.07 and β (basicity) of 0.71–1.28, indicating polarity akin to short-chain alcohols like (β = 0.66) but with enhanced hydrogen bonding, as measured by Reichardt's ET(30) scale. DES reactivity stems from their donor components, enabling catalytic roles in reactions such as Diels-Alder cycloadditions and proton transfers, where the extended H-bond networks stabilize transition states and promote selectivity. Toxicity profiles are typically lower than those of volatile solvents, with natural DES displaying low (e.g., EC50 > 100 mM in microbial assays) and high biodegradability, though some synthetic mixtures exhibit synergistic toxicity exceeding individual components like . Thermodynamically, in DES systems, such as : with , is often endothermic at low DES fractions (up to 5.35 kJ·mol⁻¹) but can shift to exothermic with higher DES content, reflecting disrupted ionic interactions. Specific heat capacities range from 2.1 to 3.2 J·g⁻¹·K⁻¹ between 303 K and 333 K for common DES like betaine:, increasing with temperature and solute absorption due to enhanced molecular motion.

Applications

Chemical and Industrial Applications

Deep eutectic solvents (DESs) serve as effective reaction media in organic synthesis, enabling reactions that are challenging in traditional solvents due to their tunable polarity and hydrogen bonding capabilities. For instance, in the Diels-Alder cycloaddition, DESs such as choline chloride-urea mixtures promote high yields and selectivity by stabilizing transition states through hydrogen bonding interactions, as demonstrated in studies using N-ethylmaleimide as the dienophile. Similarly, DESs facilitate biodiesel production via transesterification of vegetable oils, acting as catalysts or co-solvents to enhance reaction rates and reduce energy requirements compared to conventional alkaline catalysts. In extraction processes, DESs efficiently separate polycyclic aromatic hydrocarbons from fuel matrices by exploiting their selective solvation properties, achieving extraction efficiencies exceeding 90% in some hydrophobic DES systems. For precious metal recovery, DESs like those based on choline chloride and oxalic acid extract gold(III) from hydrochloric acid solutions with high selectivity, offering an environmentally benign alternative to cyanide-based methods. In metal processing, DESs have revolutionized and techniques by providing low-viscosity, non-aqueous electrolytes that operate at ambient temperatures. Pioneering work by and colleagues demonstrated the of aluminum from chloroaluminate-based DESs, yielding smooth, adherent coatings with current efficiencies up to 95%, which overcomes limitations of high-temperature molten salts. For deposition, ethylene glycol-choline DESs enable uniform plating on various substrates, with additives like influencing nucleation mechanisms to produce compact morphologies suitable for corrosion-resistant coatings. In , choline chloride-based DESs facilitate the recovery of from spent lithium-ion cathodes; for example, one process achieves over 99% efficiency for , followed by , minimizing waste generation compared to hydrometallurgical routes involving strong acids. DESs also play a key role in processing for lignocellulosic pretreatment, where they disrupt the recalcitrant structure of materials to enhance enzymatic . Choline chloride-lactic acid DESs, for example, selectively dissolve from like wheat straw, achieving delignification rates of 70-80% under mild conditions (80-120°C), thereby improving subsequent yields for production. This approach preserves integrity while recovering high-purity for value-added applications. Regarding industrial scalability, DESs offer cost benefits through their synthesis from inexpensive, biorenewable components, with low production costs compared to ionic liquids. In fuel cells, DES-impregnated polymeric membranes enhance proton conductivity and reduce crossover, enabling efficient operation at low temperatures. For polymer solvation, DESs dissolve challenging polymers like , facilitating greener processing routes for fiber production with reduced emissions. Their low toxicity further supports large-scale adoption in these areas.

Biological and Pharmaceutical Applications

Deep eutectic solvents (DES), particularly natural deep eutectic solvents (NADES), have emerged as biocompatible media for extracting bioactive compounds from biological sources, offering advantages over traditional organic solvents due to their low toxicity and biodegradability. NADES, first conceptualized as cellular components in plant metabolism, enable efficient extraction of flavonoids from herbs like Scutellaria baicalensis, where choline chloride-based NADES achieved yields comparable to or higher than methanol, with enhanced selectivity for baicalin and wogonin. Similarly, for alkaloids, DES such as choline chloride-urea mixtures have been used to extract tetrandrine from Stephania tetrandra roots, demonstrating up to 95% recovery efficiency under mild conditions, preserving compound integrity better than conventional methods. In pharmaceutical applications, DES enhance drug solubilization by forming hydrogen-bonding networks that disrupt crystal lattices of poorly -soluble active pharmaceutical ingredients (APIs). For instance, therapeutic deep eutectic solvents (THEDES) combining with increased the of ibuprofen by over 100-fold compared to , facilitating oral formulations without compromising . For delivery, hydrophobic DES like those based on and fatty acids promote skin permeation of drugs such as and lidocaine by temporarily disrupting the lipid structure, achieving flux rates 5-10 times higher than aqueous gels in models. Additionally, DES stabilize enzymes in biocatalytic processes; -glycerol systems maintained α-chymotrypsin activity at 80-90% after 24 hours at 50°C, attributed to preferential hydration shells that prevent protein denaturation. Biomedically, DES exhibit antimicrobial properties suitable for wound care and infection control. Choline chloride-based NADES inhibited and growth with minimum inhibitory concentrations as low as 10% v/v, due to membrane-disrupting ionic interactions, outperforming some commercial antiseptics in assays. In biomaterial development, DES facilitate dissolution for regenerative applications; for example, a betaine-urea NADES dissolved at 10 wt% to form biocompatible films and scaffolds, enabling tunable mechanical properties for without toxic residues. DES also support environmental remediation relevant to biological systems, such as removing heavy metals from aqueous media to protect aquatic ecosystems. Hydrophobic DES like menthol-decanoic acid extracted over 99% of Cu²⁺ and Pb²⁺ from contaminated at 4-6, with recyclability up to five cycles while maintaining low ecotoxicity toward and models.

Research and Future Perspectives

Recent research in deep eutectic solvents () has focused on developing responsive variants that can switch properties through external stimuli such as or light, enabling tunable applications in extraction and separation processes. For instance, -responsive natural , formed by combining fatty acids with , demonstrate reversible phase transitions that facilitate efficient recovery of extracted compounds like phenolic acids from plant matrices, reducing compared to traditional solvents. Similarly, light-switchable incorporating photoresponsive moieties have been explored for controlled release in , with studies showing rapid structural changes under UV irradiation to modulate . These advances, documented in 2024 reviews, highlight the potential of responsive to enhance in chemical processes by minimizing waste. Porous DES represent another 2024-2025 breakthrough in for gas capture and separation. Emerging applications include in liquid chromatography, where reviews from 2019-2025 emphasize their role as green mobile phase additives, improving resolution for polar analytes like pharmaceuticals while eliminating hazardous organic solvents. In preservation, -based coatings have shown efficacy against pathogens like on tomatoes through controlled release of bioactive compounds. For detection, sensors fabricated via -synthesized detect pesticides at trace levels. Sustainability efforts have advanced pretreatment using DES-ionic liquid (IL) hybrids, as outlined in 2024-2025 reviews, which delignify feedstocks like wheat straw with high efficiency at mild temperatures. Natural DES (NADES) have gained spotlight in 2025 food analysis for extracting contaminants, offering high extraction yields with assistance and superior to organic solvents. In self-assembly and nanostructures, DES facilitate formation for encapsulation, where reverse nanomicelles from oxymatrine-lauric DES achieve particle sizes under 50 for targeted . DES also enable thermoelectric polymers, with 2025 composites of choline-based DES and hydrogels exhibiting Seebeck coefficients up to 7.4 mV/K at high humidity, suitable for flexible . As of November 2025, ongoing efforts include developing regulatory frameworks under initiatives like REACH to standardize DES toxicity and facilitate commercialization.

Challenges and Future Directions

One of the primary challenges in utilizing deep eutectic solvents () is their inherently high , which often exceeds 100 ·s at ambient temperatures, limiting fluid flow, rates, and the efficiency of continuous such as pumping and mixing. This property arises from strong bonding networks between components, impeding molecular and complicating applications that require rapid . In electrochemical contexts, the high viscosity correlates with low ionic —typically below 10 mS/cm—restricting DES performance in devices like batteries and supercapacitors, where efficient is essential. Furthermore, the incomplete understanding of structure-function relationships in DES, particularly regarding solid-liquid equilibria and thermodynamic non-idealities, hampers the rational design of tailored formulations, as predictive models for property optimization remain underdeveloped based on limited experimental data. Economic and scalability barriers further constrain DES adoption, particularly for natural deep eutectic solvents (NADES), which rely on bio-based components like and sugars. Purification is a significant issue, as synthesis often introduces 5–30% impurities from side reactions during heating or mixing, necessitating energy-intensive or steps that elevate production costs. Sourcing NADES precursors poses additional challenges, with many—such as quaternary ammonium salts—derived from non-renewable routes, undermining the "green" credentials and increasing dependency on fluctuating supply chains; true bio-sourcing remains limited to a few metabolites, complicating large-scale availability. Looking ahead, efforts to develop low-viscosity DES, such as those incorporating fluorinated hydrogen bond acceptors or diluted with minimal (up to 20 wt%), aim to reduce viscosities below 50 mPa·s while preserving stability, enabling broader processability in extraction and separation technologies. Integration of , including models for predicting physicochemical properties like melting points and solubilities from molecular descriptors, offers a pathway to accelerate DES discovery, with recent frameworks achieving over 90% accuracy in eutectic point estimation from vast datasets. Expanded applications in carbon capture, where DES demonstrate CO₂ absorption capacities up to 0.2 /mol via ing, and in as sustainable inks for biocompatible scaffolds, hold promise for sustainable manufacturing, though pilot-scale demonstrations are needed to validate performance. Regulatory hurdles, centered on , must be addressed for , as can exhibit synergistic toxicities higher than individual components—e.g., choline-based DES showing LC₅₀ values as low as 200 mg/L in aquatic assays—due to enhanced bioavailability from charge delocalization. Establishing structure-toxicity relationships through standardized and ecotoxicological protocols, aligned with frameworks like REACH, is crucial to classify DES as safe alternatives and facilitate commercialization.

References

  1. [1]
    Deep eutectic solvents: syntheses, properties and applications
    Jul 17, 2012 · A DES is a fluid generally composed of two or three cheap and safe components that are capable of self-association, often through hydrogen bond interactions.Missing: definition | Show results with:definition
  2. [2]
    Deep Eutectic Solvents (DESs) and Their Applications
    Oct 10, 2014 · DESs contain large, nonsymmetric ions that have low lattice energy and hence low melting points. They are usually obtained by the complexation ...
  3. [3]
    A Comprehensive Review on Deep Eutectic Solvents and Its Use to ...
    The main aim of this paper is to give a comprehensive review which describes the main properties, characteristics, and production methods of deep eutectic ...
  4. [4]
    Revisiting the Physicochemical Properties and Applications of Deep ...
    In this regard, “Deep Eutectic Solvents” have been introduced recently. DESs are less toxic, highly degradable, biocompatible, and easily prepared from the ...
  5. [5]
    Novel solvent properties of choline chloride/urea mixtures
    Abstract. Eutectic mixtures of urea and a range of quaternary ammonium salts are liquid at ambient temperatures and have interesting solvent properties.
  6. [6]
    Deep Eutectic Solvents: Are They Safe? - MDPI
    In general, these mixtures present low vapor pressure and, therefore, low volatility, are non-flammable, and are compatible with water and, theoretically, ...
  7. [7]
  8. [8]
  9. [9]
    Processing of lignin in urea–zinc chloride deep-eutectic solvent and ...
    The preferable molar ratio of ZnCl2–urea was 3 : 10 (Tg = −26.3 °C). The structural changes of the pretreated lignin samples were investigated by Fourier ...
  10. [10]
    Are Natural Deep Eutectic Solvents the Missing Link in ... - NIH
    These compounds include sugars, some amino acids, choline, and some organic acids such as malic acid, citric acid, lactic acid, and succinic acid. With the ...
  11. [11]
    Natural deep eutectic solvents in phytonutrient extraction and other ...
    Sep 20, 2022 · A NaDES is a mixture of two or more natural components including sugars, sugar alcohols, polyalcohols, amino acids, organic acids, and organic ...Introduction · Components and preparation... · Physicochemical properties of...
  12. [12]
    Assessing the Influence of Betaine-Based Natural Deep Eutectic ...
    Sep 12, 2022 · Five different betaine-based NADES were characterized in terms of water content, water activity, density, and viscosity experimentally and by thermodynamic ...
  13. [13]
    [PDF] Natural deep eutectic solvents (NADES) for the extraction of bioactives
    Apr 4, 2024 · Choi et al. (2011) hypothesized that NADES occur naturally within cells due to the abundance of compounds like amino acids, sugars, organic ...<|control11|><|separator|>
  14. [14]
    Preparation of novel, moisture-stable, Lewis-acidic ionic liquids ...
    Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. A. P. Abbott, G. Capper ...
  15. [15]
  16. [16]
    Ionic liquids: a brief history - PMC - NIH
    He discovered that [EtNH3][NO3] has a melting point of 12 °C (Walden 1914). This was also the first example of a protic ionic liquid (PIL) (Greaves and ...
  17. [17]
    Natural Deep Eutectic Solvents: Properties, Applications, and ...
    Mar 7, 2018 · As functional liquid media, natural deep eutectic solvent (NADES) species can dissolve natural or synthetic chemicals of low water solubility.
  18. [18]
    Deep eutectic solvents for improved biomass pretreatment
    Deep eutectic solvents (DES) have emerged as a novel alternative to conventional solvents representing a step forward in achieving more sustainable processes.
  19. [19]
    Deep eutectic solvents: Preparation, properties, and food applications
    Apr 15, 2024 · This review paper gives the overview of application of eco-benign DESs in fruits, vegetables, cereals, pulses, spices, herbs, plantation crops, oil seed cropsMissing: definition | Show results with:definition
  20. [20]
    Review on Carbon Dioxide Absorption by Choline Chloride/Urea ...
    Jan 4, 2018 · This review summarizes the first prepared deep eutectic solvent “reline” that is made by mixing choline chloride and urea in 1 : 2 molar ratio.
  21. [21]
    Natural Deep Eutectic Solvents (NADESs) Combined with ... - NIH
    Dec 22, 2022 · Five methods are reported to prepare NADES: thermal mixing, vacuum evaporation, freeze-drying, ultrasonication, and microwave. Thermal ...
  22. [22]
    [PDF] Deep Eutectic Solvents in Separations: Methods of Preparation ...
    The aqueous solution is frozen at a very low temperature (77 K or 253 K) and then freeze-dried by ... The vacuum evaporation method is an approach in which the ...
  23. [23]
    Use of Batch Mixing To Investigate the Continuous Solvent-Free ...
    Oct 23, 2017 · The aim of the current work was to investigate how the use of a batch mixer could provide insight into a mechanochemical reaction and thereby ...
  24. [24]
    Continuous Ionothermal Synthesis of Multifunctional Photochromic ...
    Aug 22, 2025 · The use of low-cost deep eutectic solvents (DESs) provides an economical and scalable alternative to the synthesis of photochromic materials. In ...
  25. [25]
    Deep Eutectic Solvents: An Eco‐friendly Design for Drug Engineering
    Jul 18, 2023 · Deep eutectic solvents (DESs) appeared as an alternative to harmful organic solvents ... melting point depression. Moreover, the presence of ...
  26. [26]
    Preparation of Binary and Ternary Deep Eutectic Systems - JoVE
    Oct 31, 2019 · These systems were prepared by different methods: freeze-drying (FD), vacuum evaporation (VE), and heat and stirring (HS) with and without water ...Missing: non- | Show results with:non-<|separator|>
  27. [27]
  28. [28]
  29. [29]
  30. [30]
    A comprehensive review on the physicochemical properties of deep ...
    Jan 4, 2024 · A comprehensive review that compiles and evaluates recent works documenting the physicochemical properties of DESs is required to improve our understanding.
  31. [31]
    Deep Eutectic Solvents: Properties and Applications in CO2 ... - MDPI
    Deep eutectic solvents have similar physical properties to ionic liquids, and they are practically non-volatile and non-flammable, but additionally they are ...
  32. [32]
    Guidelines for a correct evaluation of Deep Eutectic Solvents ...
    In this short review, we propose a guide for a correct evaluation of DES thermal stability, conducted mainly by dynamical thermogravimetry (TGA).
  33. [33]
    Deep Eutectic Solvents: A Review of Fundamentals and Applications
    ### Summary of Chemical Properties of Deep Eutectic Solvents (DES) from https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00385
  34. [34]
    Stability of Cholinium Chloride-Based Deep Eutectic Solvents with ...
    Oct 17, 2024 · The results show that the DES formed with [Ch]Cl: formic acid has lower thermal and long-term stability, but the addition of water to DES significantly reduces ...
  35. [35]
    Molecular-Based Guide to Predict the pH of Eutectic Solvents
    Apr 22, 2021 · In this work, the pH of various eutectic solvents have been predicted via novel quantitative structure−property relationships (QSPR) models using two machine ...Introduction · Methodology · Supporting Information · Nomenclature
  36. [36]
    Physicochemical properties of deep eutectic solvents: A review
    Aug 15, 2022 · With the rise in temperature, DESs pH reduces linearly due to it depends on hydrogen bond donors (Skulcova et al., 2018). DESs have poor ...
  37. [37]
    Aggregation in Deep Eutectic Solvents (DESs): Formation of Polar ...
    Jul 18, 2024 · Depending on its constituents, a DES may be highly polar or nonpolar in nature. This offers an enticing possibility of formation of novel ...
  38. [38]
    Solvatochromic parameters of deep eutectic solvents formed by ...
    Sep 25, 2017 · The two most commonly used scales to characterize solvents in terms of solvatochromic parameters are the ET(30) polarity scales of Dimroth and ...
  39. [39]
    Effect of Different Carboxylic Acids as Hydrogen Bond Donor
    Jan 6, 2020 · The physicochemical properties of carboxylic acid-based deep eutectic solvents (DESs) were measured by solvatochromic probes.Introduction · Results and Discussion · Conclusions · Supporting Information
  40. [40]
    The role of deep eutectic solvents in catalysis. A vision on their ...
    By definition, DESs are liquid systems formed by the interaction of two or more components, typically a hydrogen bond donor (HBDs) and a hydrogen bond acceptor ...
  41. [41]
    Deep eutectic solvents (DESs) as eco-friendly and sustainable ...
    But DESs seem to be a less toxic alternative to ionic liquids. Deep eutectic solvents show similar physicochemical properties to ionic liquids, but they are ...
  42. [42]
    Probing the Environmental Toxicity of Deep Eutectic Solvents and ...
    May 24, 2019 · Deep eutectic solvents (DESs) are eutectic mixtures of salts and hydrogen bond donors with melting points low enough to be used as solvents.Introduction · Results and Discussion · Conclusions · Supporting Information
  43. [43]
    Molar Enthalpy of Mixing for Choline Chloride/Urea Deep Eutectic Solvent + Water System
    ### Summary of Enthalpy of Mixing for Choline Chloride/Urea Deep Eutectic Solvent + Water System
  44. [44]
    Specific heat capacities of deep eutectic solvents applicable for ...
    Results showed that specific heat capacity increased with temperature in the range of 303.15 K – 333.15 K, both for pure DESs and for solutions after SO2 ...
  45. [45]
    Estimation of the heat capacities of deep eutectic solvents
    Jun 1, 2020 · A simple, straightforward, yet precise correlation was developed to estimate the heat capacities of DESs as a function of temperature, molecular weight, ...
  46. [46]
    A Joint Action of Deep Eutectic Solvents and Ultrasound to Promote ...
    Mar 16, 2020 · We studied the Diels–Alder reaction using N-ethylmaleimide as dienophile and changing the nature of the diene in deep eutectic solvents (DES)
  47. [47]
    Deep eutectic solvents – Versatile chemicals in biodiesel production
    Jul 1, 2021 · This present study specifically summarizes the application of DESs as a catalyst, cosolvent and extracting solvent in biodiesel production.
  48. [48]
    Deep eutectic solvent for the extraction of polycyclic aromatic ...
    Sep 1, 2024 · This review focused on research involving the utilization of DESs to extract PACs in matrices such as PAHs in environmental samples, NSO-HET in fuels, and ...
  49. [49]
    Metal extraction from a deep eutectic solvent, an insight into activities
    Apr 28, 2020 · The study extracted gold, palladium, technetium, indium, and rhenium from deep eutectic solvents using solvent extraction, and used specific ...
  50. [50]
    Double layer effects on metal nucleation in deep eutectic solvents
    The electrodeposition of zinc has been studied in two deep eutectic solvents. Unlike the metals studied to date in these liquids, zinc electrodeposition is ...
  51. [51]
    Tunable and functional deep eutectic solvents for lignocellulose ...
    Sep 14, 2021 · Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the ...Results · Derivatization/protection... · Lignin Model Compound...<|separator|>
  52. [52]
    Polymeric membranes functionalized with deep eutectic solvents as ...
    This study explores novel membranes based on deep eutectic solvents (DES) combined with commercial polyvinyl chloride (PVC) for bioenergy generation in ...
  53. [53]
    Are Natural Deep Eutectic Solvents the Missing Link in ...
    Aug 5, 2011 · Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Young Hae Choi,.
  54. [54]
    Natural Deep Eutectic Solvent Extraction of Flavonoids of Scutellaria ...
    Jan 31, 2020 · We explore the potential of NADES as an alternative to conventional organic solvents (eg, aqueous methanol or ethanol) for the extraction of flavonoids from ...Missing: alkaloids | Show results with:alkaloids
  55. [55]
    Effective extraction of bioactive alkaloids from the roots of Stephania ...
    Jan 25, 2023 · Recently, deep eutectic solvents (DESs) have been considered promising new green solvents for efficiently and selectively extracting substances ...
  56. [56]
    Pharmaceutical applications of therapeutic deep eutectic systems ...
    May 15, 2024 · Components in a deep eutectic solvent (THEDES) can improve the solubility of drugs that are poorly soluble by forming strong intermolecular ...
  57. [57]
    Deep Eutectic Systems as Novel Vehicles for Assisting Drug ... - NIH
    In recent years, deep eutectic systems (DES) emerged as novel vehicles for facilitating the transdermal delivery of various drugs, including polysaccharides, ...
  58. [58]
    Effect of Deep Eutectic Solvents on the Activity and Stability of ...
    Nov 23, 2023 · When the DES contains more water, the enzyme's structure becomes more stable as more hydrogen bonds are formed. Additionally, significant ...Introduction · Materials and Methods · Results and Discussion · References
  59. [59]
    Antibacterial and antifungal activities of natural deep eutectic solvents
    Feb 7, 2024 · Natural deep eutectic solvents are promising antimicrobial alternative to antibiotics. NADES holds high potential for their activity against bacterial ...
  60. [60]
    Cellulose dissolution for edible biocomposites in deep eutectic ...
    Nov 15, 2023 · This review includes a comparative analysis of various DES-based solvents, which addresses concern pertaining to the toxicity of DESs.Review · Introduction · Deep Eutectic Solvents And...
  61. [61]
    Recyclable water-modified deep eutectic solvents for removal of ...
    Deep eutectic solvents (DESs) are recognized as environmentally friendly reagents with great potential in the removal of heavy metals from soil. In this study, ...
  62. [62]
    pH-Responsive Natural Deep Eutectic Solvent: An Environmental ...
    Nov 26, 2024 · In this work, we designed three pH-responsive natural deep eutectic solvents (NADESs) by combining the pH-switchable solvent fatty acids with ...Missing: light | Show results with:light
  63. [63]
    Responsive deep eutectic solvents: mechanisms, applications and ...
    Dec 11, 2024 · This review provides an overview of the diverse types of RDES, their switching mechanisms and their application in several fields.
  64. [64]
    Porous Deep Eutectic Solvents–Unfulfilled Dream or the Next ...
    Dec 24, 2024 · Porous deep eutectic solvents (PDES) are capturing the imagination of scientists, promising a revolutionary leap in material science.Introduction · Porous Deep Eutectic Solvents... · Conclusion and Future Outlook
  65. [65]
    Recent Developments in Deep Eutectic Solvents Applications in ...
    May 7, 2025 · Deep eutectic solvents (DES) are used as mobile phase and stationary phase modifiers, or as for the stationary phase itself for thin layer/liquid/supercritical ...ABSTRACT · Introduction · Use of DES as Solvents in... · DES as a Stationary Phase
  66. [66]
    Deep Eutectic Solvents as Green Alternatives in Postharvest Fruit ...
    Sep 2, 2025 · This review highlights the recent advances in the application of DESs for postharvest fruit preservation, focusing on their antimicrobial, ...
  67. [67]
    Review Deep eutectic solvents in food contaminants detection ...
    Jun 1, 2025 · This review highlights the characteristics of DESs, their mechanisms for extracting target analytes and applications in food analysis.
  68. [68]
    Recent Advances in the Use of Ionic Liquids and Deep Eutectic ...
    Jun 6, 2025 · ILs and DESs are denser than molecular organic solvents, with typical density values ranging from 1 to 1.6 g·cm-3. (215,216). The viscosity of a ...
  69. [69]
  70. [70]
    Deep eutectic solvent self-assembled reverse nanomicelles for ...
    May 21, 2024 · Transdermal delivery of sparingly soluble drugs is challenging due to their low solubility and poor permeability. Deep eutectic solvent (DES)/or ...
  71. [71]
    Biodegradable, ionic thermoelectric composites via self-assembly of ...
    Jan 21, 2025 · In this study, we developed biodegradable, ionic thermoelectric composites by co-assembling Fmoc-FF with deep eutectic solvents (DESs) composed of choline ...