Fact-checked by Grok 2 weeks ago

Flagpole

A flagpole, also known as a , , or , is a tall pole designed to support and display a . Flagpoles are used to hoist flags for national, organizational, ceremonial, or decorative purposes, and may incorporate systems like halyards for raising and lowering the flag if the pole is taller than can be easily reached.

History

Ancient Origins

The earliest known use of flagpoles dates to from the Early Dynastic period (c. 3100–2686 BCE) onward, with traditions possibly extending to Predynastic times, where tall cedar wood poles were erected at entrances to frame sacred precincts and carry symbolic banners representing deities and cosmic order. These poles, often paired and set into niches on temple pylons, supported vexilloids—non-cloth symbols such as feathers or emblems of gods like or —used in religious ceremonies to signify divine presence and territorial sanctity. The design of pylons themselves mimicked these flagpoles, with red and white striped banners evoking the unified , underscoring their role in rituals that reinforced pharaonic authority and (cosmic harmony). In , flagpole-like standards emerged even earlier, with evidence from the Late Uruk and periods (ca. 3300–3000 BCE), predating 2000 BCE usage for signaling and imperial displays. These consisted of long reed shafts, sometimes ringed or topped with streamers, depicted on cylinder seals and reliefs as markers of divine spaces near shrines, evolving into ceremonial emblems carried on poles for processions and boundary demarcation in city-states like . By around 2000 BCE, similar wooden poles supported banners in and contexts, facilitating communication in warfare and governance, as seen in artifacts like the , which illustrates pole-borne motifs of victory and tribute. Ancient employed wooden or bamboo poles for banners and signaling by the early second millennium BCE, with reconstructions showing staffs up to several meters tall topped by tridents or ribbons to denote rank and commands in battle. These poles, often made from readily available in southern regions, carried swallowtail banners in for , used by rulers of the Xia and Shang dynasties to rally troops and assert territorial control. The Romans adopted and refined flagpole designs for military standards by the late , particularly the (eagle) emblem introduced around 104 BCE under , mounted on portable metal or wooden poles for use. The , a or silver eagle symbolizing , was affixed to a with an iron base for grounding, carried by the aquilifer in campaigns as a rallying point, while fixed versions were housed in camp shrines or temples during peacetime. This marked a shift in early Mediterranean cultures from natural reeds and —prevalent in and Mesopotamian designs—to more durable structured wood and metal poles, enhancing portability and symbolism in organized legions by the BCE.

Modern Developments

In the 19th century, the industrialization of the prompted a shift in flagpole from wooden to iron and materials, enabling more robust installations amid rapid and institutional expansion. Factories, , and public buildings increasingly adopted these metal poles after the 1800s to withstand heavier use and environmental stresses, marking a departure from earlier timber-based designs. A landmark event underscoring the engineering ambitions of this period was the erection of a 238-foot Douglas fir flagpole at the 1893 World's Columbian Exposition in Chicago, which demonstrated advanced techniques in large-scale assembly while highlighting the limitations of wood that accelerated the transition to metals. Around 1890 to 1910, telescoping flagpoles emerged in America as an innovative solution, featuring sectional designs that allowed height adjustments for versatile deployment in residential and military contexts. This development catered to growing needs for portable and adaptable flag displays during a time of expanding national infrastructure. The mid-20th century brought further innovations with the introduction of aluminum and flagpoles, which gained prominence during the post-World War II surge for their suitability in widespread new builds. Aluminum variants became prevalent following wartime material advancements, while production began commercially in 1959, supporting lighter installations in suburban and civic projects driven by economic prosperity.

Types

Ground-Mounted Flagpoles

Ground-mounted flagpoles are free-standing vertical structures anchored directly into the through foundations such as footings, providing independent support without attachment to buildings or other surfaces. These installations typically require burying the pole base in to a depth of approximately 10% of the overall mounting , though for poles exceeding 20 feet—common in settings—this often translates to footings 6 to 12 feet deep to ensure stability against environmental forces. Common subtypes include sectional flagpoles, which consist of multiple interlocking pieces for easier transportation and assembly, and one-piece designs, such as spun aluminum poles that offer seamless construction for enhanced structural integrity. Sectional variants are particularly suited for residential or portable applications, while one-piece spun aluminum models provide superior wind resistance due to their continuous form without joints. These flagpoles find widespread applications in residential yards for personal displays, commercial sites like corporate campuses for , and public spaces such as or parks for ceremonial purposes. Design considerations often include wind load ratings, with standard models engineered to withstand gusts up to 100 miles per hour when unflagged, ensuring durability in moderate wind zones. The primary advantages of ground-mounted flagpoles lie in their prominent visibility and sense of grandeur, allowing flags to be displayed at impressive elevations that command attention from afar. Everyday use typically involves heights ranging from 15 to 100 feet, with shorter poles (15-40 feet) suiting homes and taller ones (25-100 feet) enhancing commercial or public installations.

Wall-Mounted and Specialized Variants

Wall-mounted flagpoles, also known as poles, are secured to building facades or structures using heavy-duty brackets, allowing the pole to project outward at a 45-degree for flag display without requiring ground . These variants typically range in length from 6 to 20 feet, providing projections of similar dimensions to ensure visibility in constrained environments. They are commonly used in residential settings such as homes and balconies, as well as areas like high-traffic fronts where is limited. For instance, a 6-foot suits most single-family homes, while longer options up to 8 feet accommodate larger s on multi-story buildings. Nautical flagpoles, designed for yachts and ships, feature a vertical with horizontal yardarms or diagonal gaffs to support multiple flags, often incorporating stays and for enhanced stability against conditions. Constructed primarily from -grade aluminum or , these poles resist from saltwater exposure and withstand high winds at sea. variants are also prevalent for their durability in harsh saltwater environments, ensuring longevity on vessels like sailboats or motor yachts. Unlike ground-mounted poles, which rely on anchorage for stability, nautical designs prioritize to counter wave-induced motion. Indoor and portable flagpoles offer flexibility for non-permanent setups, featuring freestanding bases or telescoping sections that collapse for easy transport. These models extend to heights of 14 to 20 feet but fold down to 4 to 5 feet for storage, making them ideal for ceremonies, indoor events, or outdoor activities like and festivals. Aluminum provides lightweight portability, with options like tire mounts allowing quick setup on various surfaces without tools. Specialized variants, such as those for caravans and forecourts, emphasize temporary deployment for promotional or recreational displays, often using telescoping poles with vehicle-compatible bases like wheel or foot mounts. For recreational vehicles (RVs) or caravans, portable kits with hitch or attachments enable swift installation at campsites, prioritizing ease of assembly over fixed durability. Forecourt poles, typically 10 to 15 feet tall, support feather-style flags in car lots or showrooms, featuring bases filled with or for during short-term use. These designs focus on mobility, allowing relocation without permanent fixtures.

Materials and Construction

Common Materials

Flagpoles are primarily constructed from materials that balance strength, durability, and environmental resistance, with , , variants, and being the most common choices. These materials are selected based on factors such as location, expected wind loads, requirements, and aesthetic preferences, ensuring the structure can support flags while withstanding weather exposure. Aluminum is widely used for its , with a of approximately 2.7 g/cm³, making it easier to and install compared to denser metals. It offers excellent corrosion resistance, particularly when treated with , which forms a protective layer suitable for outdoor and coastal environments. Aluminum flagpoles are ideal for heights up to in moderate wind conditions, providing cost-effective solutions for residential and commercial applications, though they can dent under impact due to their relative softness. Fiberglass, often gel-coated for enhanced protection, is non-conductive and highly UV-resistant, reducing the risk of electrical hazards and fading from sun exposure. These poles can withstand extreme winds up to 150 mph or more, flexing rather than breaking, which makes them suitable for coastal areas prone to storms and salt corrosion. While fiberglass provides low maintenance due to its inherent resistance to rust and weathering, it is generally lighter than equivalent aluminum poles for comparable strength, though still lighter overall than steel options. Steel and deliver superior strength, with yield strengths of 36,000 PSI for A-36 , enabling their use in heavy-duty and nautical applications where high load-bearing capacity is essential. Standard is prone to in humid or marine environments unless galvanized or coated with protective layers like zinc-aluminum alloys, while variants offer inherent without additional treatments. These materials are favored for robust, long-span installations but require periodic inspections to maintain integrity against oxidation. Wood, typically pine or fir, is employed for historical and decorative purposes, providing a traditional aesthetic that evokes classic designs. These poles must be treated with preservatives to combat and , as untreated wood deteriorates quickly from and . Due to their vulnerability to environmental degradation, wooden flagpoles are generally limited to heights under 35 feet, making them suitable for ornamental or indoor-outdoor transitional uses rather than high-wind or tall structures.

Key Structural Components

The and form the critical anchoring of a flagpole, ensuring against environmental forces such as and movement. sleeves, typically made of PVC or metal, are inserted into a dug to encase the lower portion of the , while provide a surface for bolting the to a pad in surface-mount installations. A is poured around the sleeve or flange, with the generally 4 to 6 times the 's width and depth extending below the local to prevent heaving. For optimal , 10% of the total is buried, plus a few inches for residential models, allowing the structure to withstand loads up to 65 mph or more depending on conditions and curing (typically 24-48 hours). At the apex of the flagpole, the and assembly facilitates operation while providing protective and aesthetic functions. The serves as the top-mounted system, often featuring revolving or sealed bearings to route the smoothly and reduce friction during flag raising and lowering; external variants expose the for accessibility, while internal designs conceal it within the pole. The , capping the , is commonly ornamental in shapes like balls, acorns, or eagles, crafted from materials such as aluminum, , or gold-plated finishes to complement the pole's design. Structurally, this cap prevents water ingress by sealing the pole's top end against rain and debris, thereby mitigating in hollow aluminum or constructions. Cleats and snaps are essential metal fittings that secure the halyard and flag, promoting reliable and tangle-free performance. Cleats, typically aluminum or devices mounted along the pole's shaft, feature looped or channeled designs for wrapping and holding the , with adjustable variants allowing positioning at various heights for user convenience. Snaps, or clips, attach directly to the flag's and the , available in for lightweight applications or durable and rubber-coated for resistance in coastal environments; proper spacing—such as one clip per interval—prevents twisting. Anti-tangle designs, including mechanisms in snaps and cleats, ensure smooth operation by minimizing friction and flag wrapping during wind exposure. For taller flagpoles exceeding 40 feet, internal reinforcements such as guy wires are incorporated to counteract and lateral forces. These tensioned cables, anchored to the ground at multiple points (typically three or four locations), attach to the pole at intervals—often every 10-15 feet starting above the —to distribute loads and prevent or in gusts up to 100 mph or higher in engineered setups. Guy wires, constructed from galvanized or stainless variants for , are tensioned to maintain plumb alignment, with turnbuckles for adjustments; this system is particularly vital for free-standing poles in high-wind zones, enhancing overall structural integrity without relying solely on base embedment.

Design and Installation

Dimensions and Proportions

The dimensions and proportions of a flagpole are critical for ensuring both aesthetic appeal and functional performance, balancing the scale of the flag with the pole's structural integrity and environmental context. A standard guideline recommends that the height of the flagpole be approximately four to five times the length () of the flag to allow for proper unfurling and visibility without excessive flapping or tangling. For example, a 20-foot pole pairs effectively with a 3-by-5-foot flag, where the flag's 5-foot length aligns with this ratio to promote smooth flying. Flagpole proportions emphasize through tapered designs, with the typically 3 to 12 inches depending on to provide adequate resistance to wind loads and ground anchoring. These poles generally taper from a of 6 to 12 inches—depending on —to 2 to 4 inches at the top, maintaining a uniform wall thickness while reducing weight aloft. This configuration ensures the pole remains slender for visual elegance yet robust at the foundation. Site-specific factors further influence sizing to optimize visibility and durability. In areas with surrounding structures, adding 10 to 20 percent extra height—such as 5 to 10 feet above nearby or —enhances flag prominence without obstruction. For wind-prone zones, aluminum poles require thicker walls, typically 0.125 to 0.25 inches, to withstand gusts up to 120 mph or more, preventing excessive sway or failure (per ASTM F1164 standards). Aesthetic guidelines recommend residential flagpoles in the 15- to 30-foot range to complement home scales, while commercial installations often use 40- to 80-foot poles for broader visibility and impact. Disproportionate sizing, such as a flag too large for the pole, can lead to tangling and reduced lifespan, underscoring the need for these balanced proportions.

Halyard Systems and Setup

Halyard systems are essential mechanisms in flagpole design, enabling the raising and lowering of flags through ropes or cables routed via pulleys. These systems vary primarily between external and internal configurations, each suited to different environments based on needs, exposure, and pole height. External systems are simpler and more cost-effective, while internal ones offer enhanced protection, particularly for commercial or public installations. External halyard systems feature a positioned outside the flagpole, routed through a at the top—often integrated with the assembly—and secured at the base with a cleat for tying off. This setup allows manual pulling to raise or lower the , making it straightforward for residential or low-traffic sites. However, the exposed is vulnerable to degradation, such as UV damage or tangling in wind, and potential , limiting its use to poles typically under 50 feet in safer, milder climates. In contrast, internal halyard systems conceal the rope or inside the , using sheaves or pulleys at the top and a ground-level access point, such as a lockable hatch, for operation via a or cam cleat. These employ durable aircraft to withstand and , providing theft resistance ideal for public or high-traffic areas where flags might be targeted. Installation requires sealed components to prevent ingress, and they are commonly used for 20 feet and taller in variable weather conditions. Installation of halyard systems begins with foundation preparation: excavate a hole with depth approximately 10% of the height plus 2 feet—for instance, about 4 feet deep for a 20-foot —and pour around a sleeve, ensuring the will be plumbed and braced. Once the is erected and leveled using wedges and dry sand fill, attach the by threading it through the top sheave or , securing it to the or cleat at the base, and connecting snap hooks for the . For internal systems, feed the using a , insert it into the , and add a for balance. Finally, test the system by cranking or pulling to verify smooth without snags. For taller poles over 80 feet, motorized variations enhance setup efficiency, incorporating electric winches within internal configurations to automate flag raising via a or , reducing physical strain in heavy-duty applications. These systems maintain security features like lockable access while integrating seamlessly with the pole's for operation.

Usage and Etiquette

Flag Raising Procedures

Flag raising procedures emphasize respect for the flag, particularly the flag, through standardized protocols outlined in . The standard method involves hoisting the flag briskly to the top of the to signify and lowering it slowly and ceremoniously to honor its . For the U.S. flag, the —the blue field with stars—must always be uppermost when displayed, ensuring the stars point upward except in specific circumstances. When raising the flag on a pole, it should be oriented so that it flies freely away from the pole, with the hoist side (containing the ) attached to the and the fly end extending outward, visible from the ground without wrapping around the staff. In cases of multiple flags on separate poles of equal height, the U.S. is positioned in the center, hoisted first and lowered last, while other flags are arranged to its left in ; no other flag may fly higher or to the right of the U.S. flag. Special protocols apply for mourning and distress. For half-staff display, ordered by the President or a state governor, the flag is first raised briskly to the peak, then lowered to half-staff—defined as one-half the distance between the top and bottom of the staff—where it remains until the end of the day or specified time, after which it is again raised to the peak before being lowered fully. The flag may be inverted, with the union down, solely as a signal of dire distress in instances of extreme danger to life or property, a tradition rooted in maritime signaling but applicable to land displays. For continuous 24-hour display, which is permissible for patriotic effect, the flag must be properly illuminated during hours of darkness to maintain visibility and respect. To execute these procedures, halyards—ropes or cables running along the pole—are used to attach and raise the via or clips, minimizing direct handling to prevent soiling or damage; attachments should align the grommets properly to avoid twisting during hoisting. This method, detailed in flagpole setup guidelines, ensures smooth operation without tangles.

Maintenance Protocols

Routine inspections are essential for ensuring the and of flagpoles, with manufacturers recommending checks at least twice annually or every few months, particularly after events. These inspections should focus on signs of , especially on metal components in coastal or humid environments; loose or frayed halyards, which can degrade from UV exposure and moisture; and structural cracks or bends in the pole that could indicate instability. For instance, halyards should be examined at points of contact with pulleys, as accelerates wear, and pulleys themselves require annual lubrication with a silicone-based spray to prevent squeaking and ensure smooth operation. Cleaning methods for flagpoles vary by material but generally involve gentle techniques to avoid damaging protective finishes. Aluminum poles can be washed with mild and warm using a soft attached to the for hard-to-reach areas, followed by a thorough rinse with a low-pressure ; abrasive cleaners or tools must be avoided to preserve the surface. variants require a mild bathroom cleaner diluted in , while for anodized finishes (such as black or ), gentle cleaning with mild and is generally recommended, but consult the manufacturer as some warranties may be voided by cleaning. Flags themselves should be spot-cleaned with mild and , and replaced every six months for daily outdoor use or sooner if fraying exceeds visible wear thresholds, typically when edges begin to unravel significantly. Weather protections play a critical role in mitigating environmental damage, particularly in areas prone to high winds, salt air, or extreme temperatures. Flags should be lowered and secured during severe weather conditions like high winds, , or buildup to reduce strain on the and pole; in coastal regions, applying rust-inhibiting or anti-corrosive coatings to or aluminum components helps combat salt-induced . For poles, periodic repainting with rust-inhibiting products is advised, while aluminum benefits from polishing to maintain its natural resistance to oxidation. These measures address vulnerabilities in materials like , which is susceptible to without proper barriers. Safety protocols are paramount during , especially for poles exceeding 20 feet in , where assistance or like bucket trucks is recommended over ladders to avoid accidents. Harnesses or fall protection gear should be used when accessing elevated components, and any bent or leaning poles must be immediately cordoned off and retired from use to prevent collapse risks; unstable structures should prompt consultation with manufacturers for repair or replacement. All work should occur in calm, dry conditions to minimize hazards.

Notable Flagpoles

Record Heights

The Cairo Flagpole in Egypt's New Administrative Capital stands as the world's tallest free-standing flagpole at 201.952 meters (662 feet), a record verified by Guinness World Records and achieved by Gharably Integrated Engineering Company upon its completion in December 2021. Constructed from over 1,040 tons of steel, it features a tapered design to withstand high winds and flies a massive 60 by 40 meter national flag, symbolizing Egypt's modern ambitions in its new capital city. Prior to Cairo's erection in 2021, the Jeddah Flagpole in held the record at 171 meters (561 feet) since its completion in , built with 500 tons of steel in King Abdullah Square using a 5-meter base diameter for stability. Equipped with an automatic hoisting system, wind speed sensors, and advanced lighting, it supports a 60 by 30 meter flag weighing 515 kilograms, engineered to endure gusts up to 120 km/h. Other notable record contenders include the Dushanbe Flagpole in Tajikistan, which reached 165 meters (541 feet) in 2011 and was the tallest until 2014, assembled from 12-meter steel tube sections by Trident Support at a cost of $3.5 million to fly a 1,500-pound flag. The Baku Flagpole in Azerbaijan, upgraded to 191 meters in 2024 from its original 162-meter height in 2010, exemplifies engineering innovation with nine conical steel segments, mass dampers to mitigate wind-induced vibrations up to resonance frequencies, and internal mechanisms for hoisting a 35 by 70 meter flag exceeding 500 kilograms.
FlagpoleLocationHeight (meters/feet)Completion YearKey Construction Notes
Cairo Flagpole, 201.952 / 66220211,040 tons steel; tapered for wind resistance; 60x40 m flag.
Baku Flagpole, 191 / 6272024 (upgrade)Nine steel segments; mass dampers; internal halyards.
Jeddah Flagpole, 171 / 5612014500 tons steel; 5 m base; automated systems.
Dushanbe Flagpole, 165 / 541201112 m steel tubes; $3.5M cost; 1,500 lb flag.
Since 2010, a surge in ultra-tall flagpoles has emerged as national symbols of pride, particularly in the Middle East and Central Asia, with heights measured from ground level excluding bases; as of 2025, the Cairo-Jeddah rivalry underscores ongoing competitions, though Cairo maintains the verified global lead. Steel's high tensile strength has enabled these feats, allowing structures to resist extreme loads without guy wires.

Famous Historical Examples

One of the most symbolically significant flagpoles in American history is that atop or associated with the U.S. Capitol in , which has served as a focal point for national ceremonies since the 19th century. The tradition of lowering the American flag to half-staff from this prominent location emerged during that era to express mourning, with a notable early instance occurring after the assassination of President on April 14, 1865, when flags nationwide, including at the Capitol, were ordered to half-staff as a gesture of collective grief. This practice was later codified in President Dwight D. Eisenhower's Proclamation 3044 on March 1, 1954, which established standardized protocols for displaying the flag at half-staff upon the death of high officials, former presidents, and during periods of national tragedy, explicitly applying to federal buildings like the Capitol. The Capitol's flagpole thus embodies democratic rituals, signaling unity and respect during events such as state funerals and commemorations. In , the Eiffel Tower's summit flagpole, installed as a temporary feature for the 1889 Exposition Universelle in , marked a pivotal moment in French national expression. Constructed as part of Gustave Eiffel's wrought-iron tower, the pole flew the French tricolor starting from the structure's inauguration on March 31, 1889, when Eiffel himself ascended to raise it, underscoring themes of technological prowess and republican pride amid the centennial of the . Though intended as ephemeral alongside the exposition's other elements, the flag display contributed to the tower's enduring legacy, inspiring integrated flag masts in later urban landmarks and public spaces as symbols of civic identity. A defining example from is the improvised flagpole used during the raising of the U.S. flag on , , on February 23, 1945. Amid fierce fighting in the , six Marines—captured in Joe Rosenthal's Pulitzer Prize-winning photograph—hoisted the Stars and Stripes on a 20-foot section of Japanese water pipe scavenged from the island, an act that boosted American morale and symbolized impending Allied victory in the Pacific theater. This event, representing sacrifice and triumph, inspired the Marine Corps War Memorial (also known as the Iwo Jima Memorial) in Arlington, Virginia, unveiled in 1954; the 78-foot bronze statue by replicates the scene, with an integrated flagpole from which the flag flies perpetually to honor U.S. Marine service. In , the Ashgabat Flagpole in stands as a modern emblem of sovereignty, completed in June 2008 at a height of 133 meters on a central square in the capital. Erected under the leadership of President , it was certified by as the world's tallest free-standing flagpole upon installation, flying the turquoise Turkmen flag to celebrate national independence gained in 1991 and foster cultural cohesion during state holidays. The structure, visible from much of the city, reinforces Turkmen identity through daily flag-raising ceremonies and has become integral to public displays of patriotism in the region.

References

  1. [1]
    Flagpole. (Athens, Ga.) 1987-current - Georgia Historic Newspapers
    Flagpole Magazine began publication in 1987 in Athens, GA as the "Colorbearer of Athens Alternative Music" and quickly expanded its content.
  2. [2]
    Flagpole Magazine - Alternative Newsweekly Foundation
    Flagpole.com is the online presence of Flagpole Magazine, since 1987 the locally owned, independent voice of Athens, Northeast Georgia.
  3. [3]
    Flagpole Magazine - Athens Area Chamber of Commerce
    Flagpole—online and on paper—covers music, art, theater, movies, books, food, drink, politics, government, people, comics, advice to the lovelorn and a ...<|control11|><|separator|>
  4. [4]
    Vexilloids in Ancient Egypt - CRW Flags
    Jan 11, 2025 · (...) Pylons flanked the front entrance to areas of sacred territory. Flags of red and white flew at the top of the pylons."
  5. [5]
    Ceremonial Standards in the Visual Culture of Early Mesopotamia
    Aug 10, 2023 · The earliest evidence of standards in Mesopotamian visual culture comes from the third and late fourth millennia BCE, namely the Jemdet Nasr Period.Missing: 2000 | Show results with:2000
  6. [6]
    Early Chinese flags
    Jul 31, 2020 · This is a reconstruction of a Chinese flag, circa 1500 BC shown in Znamierowski's World Encyclopedia of Flags.
  7. [7]
    Roman standards - IMPERIUM ROMANUM
    Roman standard (signum or signa Romanum) was a banner attached to a spar that identified a Roman unit or cavalry.
  8. [8]
    Aquila - The Eagle: Symbol of Roman Strength - Vindolanda
    Jun 27, 2025 · It was often seen on standards (symbols of a group or unit and rallying point in battle) and each legion would have carried a bronze eagle ...
  9. [9]
    Historic Heritage of the Rust Belt | Newgeography.com
    Jun 18, 2012 · It has been recently restored. These flagpoles reflect late 19th century American engineering ingenuity. Earlier poles had usually been of wood.
  10. [10]
  11. [11]
    World's tallest flagpole cracks into pieces when world's largest flag
    Jun 16, 2015 · Washington's exhibit featured a 238-foot-tall fir-tree flagpole flying a massive American flag that measured 60 feet by 20. At the time they ...
  12. [12]
    World's Columbian Exposition, Washington State Pavilion, Chicago, IL
    The main flagpole, produced of Douglas Fir, stood 238 feet in height; it was secured by wires like the mast of a ship, and even contained a crow's nest.
  13. [13]
  14. [14]
    History of PLP Composites | Fiberglass Flagpoles and Light Poles
    PLP started in 1959 making flagpoles, moved to Fitzwilliam in 1972, added light poles in the mid-1980s, and is now owned by Dan Scheerer.Missing: 20th century
  15. [15]
  16. [16]
    Foundation Options - Concord American Flagpole
    Oct 22, 2020 · They require burial of the flagpole shaft in a concrete foundation to a depth equal to 10% of the mounting height.Missing: types | Show results with:types
  17. [17]
    The Complete Guide To Installing a Flagpole
    ### Summary of Installing Ground-Mounted Flagpoles
  18. [18]
  19. [19]
  20. [20]
  21. [21]
    Flagpole Wind Load Chart
    ### Summary of Flagpole Wind Load Ratings (Up to 100 mph)
  22. [22]
    [PDF] Flagpole Specifications
    Wind Speed: 80 MPH flagged, 100 MPH un-flagged f. Mounting Device: PVC Ground Sleeve. C. Finish: 1. Directional Sanded Satin Finish: Fine, directional ...
  23. [23]
    How to install an outrigger style flagpole
    ### Summary of Outrigger Wall-Mounted Flagpoles
  24. [24]
    Outrigger Wall Mount Series - Concord American Flagpole
    Jan 27, 2022 · The Outrigger Single Stationary Series from Concord American Flagpole offers wall mounted flagpole options in lengths of 6′ to 20′.
  25. [25]
  26. [26]
  27. [27]
    What Are Nautical Flagpoles?
    ### Summary of Nautical Flagpoles for Yachts and Ships
  28. [28]
  29. [29]
  30. [30]
    Portable Telescoping Flagpole - Best Seller | FlagandBanner.com
    ### Summary of Portable Telescoping Flagpoles
  31. [31]
  32. [32]
    Forecourt Poles by Eco Print Feather Flags
    ### Summary of Forecourt Flag Poles
  33. [33]
  34. [34]
    Portable Flag Poles For Camping - Amazon.com
    4.5 17K · 30-day returns20FT RV Telescoping Flag Pole Kit, Heavy Duty 14-Gauge Aluminum Flagpole with Tire Mount Base, Portable Flag Kit for Camping, Tailgating, Trailer, and Outdoor ...
  35. [35]
  36. [36]
    Aluminium flagpole for you. Avoid mistakes when choosing it!
    The anodized finish results in a light, matte grey color. This finish is highly durable and resistant to corrosion, making it an excellent choice for outdoor ...Missing: dents | Show results with:dents
  37. [37]
  38. [38]
    Aluminum Flagpole Wind Load Calculations-Flagpole-Knowledge
    The wind will exert a force on the pole itself as well as on the flag, and these two forces must be taken into consideration to determine the toal load.
  39. [39]
  40. [40]
    Fiberglass Flag Poles - LED Lighting Supply
    LED Lighting Supply's commercial fiberglass flag poles deliver 50+ year service life & withstand 150+ mph winds. 75% fewer maintenance issues vs steel.Missing: UV | Show results with:UV
  41. [41]
  42. [42]
    Durable and Stylish steel pole kit for Outdoor Lighting Solutions
    Material Grade, Higher-grade steel (e.g., ASTM A36 or A572) offers greater yield strength. Yield strength typically ranges from 36,000 to 50,000 psi. Span ...
  43. [43]
  44. [44]
    Nautical Flagpoles with Yardarm | Single & Double Mast
    These poles are made to last in salty and windy conditions. Heavy-duty reinforcement inside each marine flagpole kit makes sure these poles stay standing. Need ...Missing: strength yield 50000 PSI rust
  45. [45]
    Wholesale Wood Flagpoles - Durable and Versatile Solutions
    4.3 332 Crafted from high-quality timber such as cedar, pine, or fir ... Design Tip: Pressure-treated or cedar wood flagpoles resist rot and weathering, making them ideal ...<|control11|><|separator|>
  46. [46]
    [PDF] Guide for Use of Wood Preservatives in Historic Structures
    This guide provides treatments and selection for pressure-treated wood, and guidance on wood preservation options for historic structures, including in-place ...Missing: flagpole | Show results with:flagpole
  47. [47]
  48. [48]
  49. [49]
  50. [50]
  51. [51]
    Design Options - Concord American Flagpole
    Oct 22, 2020 · Ball Truck. A Concord American Flagpole exclusive, the Ball Truck replaces the traditional truck and ball finial by combining the function ...
  52. [52]
  53. [53]
  54. [54]
    Snaps And Clips Flag Hardware | Gettysburg Flag Works
    ### Summary of Cleats and Snaps for Flagpoles
  55. [55]
    Alumi-Span Snap-On Flagpole Cleat
    They are adjustable and can be mounted anywhere on the flagpole body. The cleat is approximately 6 inches. These cleats are not designed to be used in securing ...Missing: fittings | Show results with:fittings
  56. [56]
  57. [57]
    A guy wire is used to support flagpoles in windy areas ... - Brainly
    Jan 28, 2020 · A guy wire is used to support flagpoles in windy areas. These wires are anchored in the ground to provide constant stability.Missing: resistance | Show results with:resistance
  58. [58]
    [PDF] UFC 3-201-02 Landscape Architecture, with Change 1
    Apr 29, 2020 · Table A-2 Flagpole Size Recommendations3. Flagpole Height Recommended Flag Dimensions. 20 ft (6.1 m). 3-1/2 ft by 6-2/3 ft (1.1 m by 2.0 m). 30 ...
  59. [59]
    Flag Pole Height Chart and Maritime Flag Arrangements
    Nov 18, 2014 · A general rule of thumb is the height of the flag should be 1/3 or 1/5 the height of the flagpole (the pole should be three or five times the height of the ...Missing: ratio | Show results with:ratio
  60. [60]
  61. [61]
    Sizes, Dimensions and Prices - American Flagpole & Flag Co.
    30-day returnsFlagpoles: Sizes, Dimensions and Prices. Exposed Height (feet). Diameter (inches). Wall Thickness (inches). Maximum Recommend Flag Size (feet). Flagged
  62. [62]
  63. [63]
  64. [64]
  65. [65]
  66. [66]
  67. [67]
  68. [68]
  69. [69]
    Internal vs. External Halyard Flagpoles: What To Know
    ### Summary of Internal vs. External Halyard Flagpoles
  70. [70]
    Internal Halyard Commercial Flagpoles vs External Halyard
    ### Summary: Internal vs External Halyard Commercial Flagpoles
  71. [71]
    None
    ### Summary of Internal Halyard Flagpole Installation Steps
  72. [72]
    [PDF] External Halyard Flagpole Installation Instructions - poletech
    Insert pole into ground sleeve, plumb with wedges, fill with sand, slide collar down, caulk, and fasten cleat/halyard box. Be cautious of utilities.
  73. [73]
  74. [74]
    4 U.S. Code § 7 - Position and manner of display - Law.Cornell.Edu
    When displayed either horizontally or vertically against a wall, the union should be uppermost and to the flag's own right, that is, to the observer's left.
  75. [75]
    [PDF] Guidelines for Display of the Flag - VA.gov
    When displayed over a street, place the union so it faces north or east, depending upon the direction of the street. When the U.S. flag is displayed from as.
  76. [76]
    [PDF] Page 66 TITLE 36—PATRIOTIC SOCIETIES AND ... - GovInfo
    (a) The flag should never be displayed with the union down, except as a signal of dire distress in instances of extreme danger to life or property. (b) The ...
  77. [77]
    4 U.S. Code § 6 - Time and occasions for display - Law.Cornell.Edu
    However, when a patriotic effect is desired, the flag may be displayed 24 hours a day if properly illuminated during the hours of darkness.
  78. [78]
    Flag Etiquette and the US Flag Code - Military.com
    Aug 14, 2024 · The U.S. flag should be again raised to the peak before it is lowered for the day. By "half-staff" is meant lowering the U.S. flag to one-half ...
  79. [79]
    FLAG ETIQUETTE - American Flagpole & Flag Co.
    The flag, when flown at half-staff, should be first hoisted to the peak for an instant and then lowered to the half-staff position. The flag should be again ...Flag Holidays · American Flag Disposal · Us flag specifications · Folding the us flag
  80. [80]
  81. [81]
    Flagpole Repair and Maintenance
    ### Flagpole Maintenance Protocols Summary
  82. [82]
    Flagpole Maintenance - AffordableFlagPoles
    For poles greater than 40' in height, 3/8 inch diameter halyard is recommended. 2. Remove the flag(s) and snaps from the existing halyard. Cut the existing ...
  83. [83]
    An Ultimate Guide to Flagpole Care and Maintenance | Baldwinflags
    Dec 28, 2023 · It is best to address water spots in the summer when the water can quickly dry off the flagpole. Remember to always follow the manufacturer's ...Missing: prevent ingress
  84. [84]
    Tallest flagpole | Guinness World Records
    The tallest flagpole is 201.952 m (662.57 ft) and was achieved by Gharably Integrated Engineering Company (Egypt), in New Administrative, Cairo, Egypt, ...
  85. [85]
    World Record Flagpole, Cairo, Egypt - Flow Engineering
    The largest flagpole in Cairo, Egypt of 201.952 meters high was finalized in early 2022. Flow Engineering supplied dampers to prevent vibrations due to ...
  86. [86]
    Saudi builds world's tallest flagpole - Arabian Business
    May 1, 2014 · The flagpole is said to be equipped with an automatic hoisting system, advanced cameras, a system for measuring wind speed and a lighting system ...
  87. [87]
    Saudi Arabia Reaches New Heights with the World's Tallest ...
    Sep 23, 2014 · The record-breaking flagpole is located at the historic 'Custodian of the Two Holy Mosques Square' on Andalus Street in the heart of Jeddah, Saudi Arabia.Missing: details | Show results with:details
  88. [88]
    Flagpole Jeddah - Flow Engineering
    An enormous flag, measuring 60 meters in length and 30 meters in width, and weighing 515 kilograms, gracefully waves in the wind. To maintain stability and ...Missing: details | Show results with:details
  89. [89]
    Dushanbe Flagpole - Atlas Obscura
    Aug 9, 2016 · According to the Guinness Book of World Records, higher than any other at a dizzying 541 ft. The Dushanbe Flagpole was constructed by a San ...
  90. [90]
    How High Does the Dushanbe Flag Fly? - Koryo Tours
    May 18, 2020 · Dushanbe, Tajikistan 165 metres​​ Since 2011 Tajikistan had carried the flagpole crown with their 165 metres giant located at the heart of the ...Missing: height | Show results with:height
  91. [91]
    Azerbaijan starts assembling one of world's tallest flagpoles in Baku
    Apr 2, 2024 · Its total height is 191 metres, according to Caliber.Az. The flagpole consists of nine segments in the form of conical steel pipes (a diameter ...<|separator|>
  92. [92]
    Mass Dampers Installed for 195 Meter Flagpole in Capital City Baku
    Feb 21, 2025 · Composed of ten conical metal segments, the flag pole faces immense wind forces that cause vibrations, leading to resonance and potential ...Missing: engineering details
  93. [93]
    Flying the flag for decades to come - maurer se
    Feb 13, 2025 · The flagpole in the Azerbaijani capital Baku towers 195 m above the city and carries a flag measuring a massive 35 x 70 m. It consists of ten ...
  94. [94]
    Another update to the list of really tall flagpoles - SAIGA Tours
    Aug 16, 2024 · Another update to the list of really tall flagpoles · 1. Cairo – 202m high · 2. Baku, Azerbaijan – 191m high · 3. St. · 4. Jeddah, Saudi Arabia – ...Missing: 2025 | Show results with:2025<|control11|><|separator|>
  95. [95]
    Proclamation 3044 - National Archives
    Aug 15, 2016 · Proclamation 3044--Display of the flag of the United States of America at half-staff upon the death of certain officials and former officials.
  96. [96]
    The French flag on the Eiffel Tower: a powerful symbol
    May 9, 2025 · As a symbol of national pride, the monument flew the French flag from a pole at the top starting from its inauguration on March 31, 1889, in ...Missing: temporary designs
  97. [97]
    The Eiffel Tower during the 1889 Exposition Universelle
    The tenth Exposition Universelle was organised in Paris in 1889, from the 15th May to the 6th November, and it was for this occasion that the Eiffel Tower was ...Missing: flagpole temporary flags urban
  98. [98]
    The Story Behind the World-Famous Photograph of U.S. Marines ...
    Feb 23, 2025 · Joe Rosenthal's iconic photos from Iwo Jima helped the United States raise $26 billion for the war and served as the basis for the Marine Corps War Memorial.Missing: victory | Show results with:victory
  99. [99]
    History of the Marine Corps War Memorial - National Park Service
    In 1945 Iwo Jima ... The Marines chose Felix de Weldon's massive, realistic statue of the second flag-raising on Iwo Jima to memorialize their illustrious history ...Missing: victory | Show results with:victory
  100. [100]
    140 years: The embodiment of achievements of independence
    Apr 19, 2021 · 133-meter flagpole in Ashgabat, which has been registered in the Guinness Record Book as the highest flagpole in the world (2008) as well as ...
  101. [101]
    Flagpole in Ashgabat - Travel Land Kyrgyzstan
    It prominently displays the Turkmen flag, symbolizing independence, cultural heritage, and unity. The flagpole has become a part of many national celebrations ...