Fact-checked by Grok 2 weeks ago

Remote manipulator

A remote manipulator, also known as a telemanipulator, is a mechanical device controlled indirectly by a human operator from a distance to perform precise manipulation tasks, often in hazardous or inaccessible environments such as those involving radioactivity, extreme temperatures, or vacuum conditions. These systems typically consist of a master arm operated by the human and a slave arm that mirrors the motions, enabling safe interaction with objects while providing force feedback to the operator for enhanced control and dexterity. The development of remote manipulators originated in the mid-20th century, driven by the needs of the nuclear industry to handle radioactive materials without direct human exposure. Early prototypes emerged in the 1940s at U.S. national laboratories like Argonne, Oak Ridge, and , initially using simple "reach rods" and shielded cranes before evolving into more sophisticated mechanical linkages. A pivotal advancement came in the with the of the bilateral force-reflecting master-slave manipulator by Raymond C. Goertz at , which introduced servo mechanisms for real-time force feedback and freed the system from fixed wall mounts, incorporating television cameras for visual oversight. By the , standardized models like Argonne's Mark E4A and variations from Central Research Laboratories became widely adopted in facilities for reprocessing and emergency response. Key components of remote manipulators include articulated joints providing multiple (typically 6 or more to mimic human arm motion), actuators (hydraulic, electric, or pneumatic), end effectors such as or tools, and interfaces that may incorporate sensors for , , and . Systems can operate in unilateral mode (no ) or bilateral mode (with reflection for intuitive ), with modern iterations integrating microprocessors for improved reliability and . Challenges in design have historically included managing complexity, ensuring in harsh environments, and optimizing human-machine to reduce operator fatigue. Remote manipulators have found critical applications across industries, including nuclear facilities for material handling and maintenance, space exploration for payload deployment, and underwater operations via remotely operated vehicles (ROVs). In space, the Shuttle Remote Manipulator System (SRMS), or , developed by MDA Space (formerly ) for , exemplifies advanced use: a 50-foot, 6-degree-of-freedom arm that supported 90 missions from 1981 to 2011, deploying satellites like the , aiding extravehicular activities, and inspecting thermal protection systems. Its successor, , has been operational on the since 2001, supporting assembly, maintenance, and cargo handling as of 2025. is developing for the , expected in the late 2020s. Evolving designs continue to influence fields like and , emphasizing dexterity in unstructured settings.

Definition and Principles

Definition

A remote manipulator is a , electromechanical, or hydromechanical that enables a to control a hand-like or arm-like , typically through mechanical linkages, electrical signals, or hydraulic systems, for the purpose of interacting with objects in environments inaccessible or hazardous to direct human presence. These systems, often referred to as telemanipulators, function as extensions of the operator's limbs, allowing precise while the operator remains in a location. The primary purposes of remote manipulators include enhancing by handling dangerous materials, such as radioactive substances, without exposing personnel to ; achieving in confined or restricted spaces where mobility is limited; and extending reach into remote areas, thereby avoiding direct physical to risks like extreme temperatures or toxic atmospheres. This prioritizes operator control to ensure reliable task execution in high-stakes scenarios. Unlike fully autonomous robotic systems, which operate independently based on pre-programmed algorithms, remote manipulators emphasize teleoperation, where the operator provides real-time guidance and decision-making to adapt to dynamic conditions. The terminology "telemanipulator" describes this master-slave configuration, while the colloquial term "" originated in Robert A. Heinlein's 1942 science fiction novella Waldo, which depicted remote-controlled mechanical arms and influenced subsequent nomenclature.

Operating Principles

Remote manipulators operate through systems that enable an to a remote device, known as the slave arm, using an called the master arm. The core principles distinguish between unilateral and bilateral modes. In unilateral , commands from the are transmitted to the slave arm without any force or sensory returning to the , resulting in open-loop operation where the slave executes motions based solely on master inputs. This mode simplifies but limits the 's of remote environmental . In contrast, bilateral establishes a two-way , where inputs drive the slave arm while forces and torques encountered by the slave are reflected back to the master, providing haptic to enhance precision and safety. The functionality of remote manipulators relies on their degrees of freedom (DOF), which define the independent motions achievable by the end effector. Most manipulators feature 6 to 7 DOF to approximate human arm capabilities, comprising three translational DOF for positioning in space and three rotational DOF for orientation, with an additional prismatic or for wrist-like dexterity. These DOF are realized through kinematic chains consisting of interconnected rigid links and joints, such as for or prismatic joints for , forming serial structures that propagate motion from base to end effector. Transmission between master and slave arms occurs via various linkage types, each suited to specific operational demands. Mechanical linkages employ direct connections like cables, pulleys, or wire ropes to transfer motion, offering simplicity and low latency but limited for complex or distant setups. Electrical linkages use servo motors to drive joints, enabling precise position and velocity control through electronic signals, which supports with systems. Hydraulic linkages from cylinders and pistons to actuate heavy loads, providing high force output and for robust tasks, though they require fluid management to mitigate leaks and response delays. The basic teleoperation loop integrates these elements into a closed cycle: operator inputs via the master arm are processed and transmitted to the slave arm for execution, while sensors on the slave capture environmental data—such as position, velocity, and forces—which is fed back to the operator for real-time adjustment. This loop ensures synchronization, with bilateral systems incorporating force reflection to mimic direct manipulation, thereby improving task efficiency and operator immersion.

History

Origins and Early Development

The conceptual origins of remote manipulators trace back to early 20th-century ideas for mechanical aids to extend human reach, particularly for individuals with physical limitations. Robert A. Heinlein drew inspiration from a 1918 article in Popular Mechanics describing a man afflicted with myasthenia gravis who constructed lever-based mechanisms to amplify his weakened movements and control external tools. This concept influenced Heinlein's 1942 novella "Waldo," serialized in Astounding Science Fiction, which depicted a reclusive inventor using synchronized "waldoes"—remote mechanical hands controlled via gloves and harnesses—to perform intricate tasks from afar, such as repairing machinery. The story popularized the idea of teleoperated devices for precision work in hazardous or inaccessible environments, coining the term "waldo" that later entered technical lexicon for similar systems. The practical development of remote manipulators was spurred by safety imperatives during , as researchers grappled with the risks of handling explosives and newly discovered radioactive materials in nuclear experiments. The , initiated in 1942, amplified these needs, requiring methods to manipulate fissile substances without direct human exposure in facilities like those at Oak Ridge, where early remote handling tools were employed to process and . This wartime context shifted focus from rudimentary gloveboxes—sealed enclosures with attached gloves for indirect manipulation—to more advanced mechanical systems that could extend reach while minimizing or explosion hazards. In 1945, Argonne National Laboratory contracted Central Research Laboratories to develop the first remote manipulator prototypes. Building on this, in the late 1940s at , founded in 1946 from legacies, engineer Raymond C. Goertz pioneered the master-slave manipulator, with initial designs emerging around 1948 to enable safe handling of radioactive isotopes in laboratory operations. The device featured a master arm operated by the user and a slave arm that mirrored movements behind a protective barrier, allowing dexterous control of tools or materials without physical contact. Goertz's 1949 report and patent formalized this innovation, marking the transition from conceptual fiction to engineered reality for nuclear research.

Post-War Advancements

In 1954, a team led by Raymond C. Goertz at achieved a major breakthrough by developing the first electromechanical manipulator equipped with servo feedback control, allowing for precise remote handling of hazardous nuclear materials in controlled environments. This innovation marked a shift from purely mechanical linkages to electrically driven systems, improving accuracy and operator control in radiation-shielded settings. By the , standardized models such as Argonne's Mark E4A and variations from Central Research Laboratories became widely adopted in facilities for reprocessing and emergency response. During the and , remote manipulators expanded beyond nuclear research into broader industrial applications, with hydraulic systems emerging to manage heavier payloads and more demanding tasks. These hydraulic designs provided greater force capacity and robustness, facilitating integration into and assembly lines where remote operation enhanced safety and efficiency. Concurrently, manipulators were refined specifically for highly radioactive environments, featuring radiation-hardened components to enable prolonged operation inside shielded enclosures for material processing and examination. In the , NASA's testing of remote manipulation technologies laid the groundwork for space-based systems, culminating in the development of the Shuttle Remote Manipulator System (SRMS), or , which was successfully deployed on the in 1981 to handle orbital payloads. This period also saw key institutional contributions, particularly from (ORNL), which advanced teleoperated manipulators through iterative designs emphasizing , digital controls, and enhanced human-machine interfaces for research-oriented tasks.

Types of Remote Manipulators

Mechanical Manipulators

Mechanical manipulators represent the earliest form of remote manipulation systems, relying on direct physical linkages to transmit motion and force between a master control device and a slave effector without any electronic or hydraulic assistance. These systems typically employ rigid rods, levers, or flexible cables arranged in parallelogram or push-pull configurations to ensure synchronized movement, allowing the operator's inputs at the master arm to be mirrored precisely by the slave arm. Limited to 3-6 degrees of freedom (DOF) for the arm—typically comprising three translational and three rotational motions, plus an additional DOF for gripping—these designs prioritize simplicity and direct kinematic correspondence over complex actuation. The core advantage of mechanical manipulators lies in their inherent reliability within harsh environments, as the absence of electrical components eliminates risks of failure from , , or power disruptions common in or contaminated settings. Their construction from durable metals and mechanical joints results in low maintenance needs and extended operational life, often spanning decades without significant upgrades. Additionally, these systems are cost-effective, with early models estimated at around for a complete master-slave pair, offering intuitive one-to-one motion scaling that provides operators with immediate tactile feedback proportional to the slave's interactions, enhancing dexterity for straightforward tasks. Pioneered in the for handling radioactive materials, the first mechanical master-slave manipulator was developed by Raymond C. Goertz at in 1949, featuring seven total motions for precise tong operation behind shielding barriers in gloveboxes. These early glovebox manipulators, installed in "hot cells" for nuclear research, enabled safe manipulation of hazardous substances and remain in use today for basic, non-powered in laboratory environments where simplicity outweighs the need for advanced capabilities. Despite their robustness, mechanical manipulators suffer from inherent limitations in force scaling, as the direct linkage transmits slave-side loads undiminished to the , making it challenging for operators to handle heavy objects—such as those exceeding 50 pounds—without excessive effort. This unassisted reflection also contributes to operator fatigue during prolonged sessions, exacerbated by the need to overcome , , and in the linkage system, often necessitating slower, trial-and-error operations to maintain control.

Electromechanical and Hydraulic Manipulators

Electromechanical remote manipulators utilize servo motors and gear systems to achieve precise motion across multiple (DOF), typically six or more, enabling dexterous tasks in hazardous environments. These systems employ electrical actuators for both master and slave arms, with position sensing via potentiometers or optical encoders to ensure accurate tracking. Bilateral force feedback is implemented through electrical signals that reflect interaction forces from the slave to the master, enhancing operator perception and control stability. For instance, the M-2 servomanipulator, developed at (ORNL) in the late 1970s, was the first digitally controlled teleoperator, featuring 6-DOF force-reflecting design with servo motors and cable drives for a continuous lift capacity of 23 kg. In recent years, all-electric manipulators have gained prominence for their improved and lower maintenance needs compared to hydraulic systems. Hydraulic remote manipulators rely on fluid-powered actuators to generate substantial force for demanding applications, such as handling loads up to several hundred (e.g., 250 ) in or subsea settings. These systems use pressurized to drive cylinders or motors, providing high stiffness and rapid response times compared to other actuation methods. In operations, hydraulic manipulators on remotely operated (ROVs) excel in tasks requiring robust power, such as manipulating subsea at depths exceeding 4,000 meters under ambient pressures over 6,000 . ORNL's hydraulic in the 1980s further advanced these designs by emphasizing high torque-to-inertia ratios for heavy-duty . A distinguishing feature of both electromechanical and hydraulic manipulators is the use of scaling ratios to amplify operator effort, such as force amplification of 10:1 or position scaling from 1:1 to 1:16, allowing precise of heavy or distant objects without proportional physical strain. Later models integrated computer systems for trajectory planning, enabling automated path computation and obstacle avoidance to improve efficiency in complex maneuvers; ORNL's Advanced Servomanipulator () from the exemplified this with modular electronics and digital interfaces for enhanced human-machine interaction. Modern ROV variants, like the electric manipulators from Blueprint Lab (now Reach Robotics), use electromechanical actuators for both heavy lifting and fine dexterity in inspection tasks.

Applications

Hazardous Material Handling

Remote manipulators play a critical role in the nuclear industry for handling radioactive materials in shielded environments such as s and gloveboxes, where direct human access is prohibited due to high levels. These systems enable precise manipulation of fuel rods and irradiated components, minimizing operator exposure in line with the ALARA (As Low As Reasonably Achievable) principle outlined in IAEA safety standards. Early developments at in the mid-20th century established foundational master-slave manipulator technologies for operations, including the disassembly of experimental fuel pins in alpha-gamma facilities designed for remote handling of highly radioactive substances. Modern IAEA-compliant manipulators, such as servo-telemanipulators used in India's for fuel cutting and canning in hot cells, incorporate advanced features like modular designs and computer-controlled operations to meet international safety guidelines for remote handling of radioactive materials. These systems adhere to standards like ISO 17874-2, which specify criteria for mechanical master-slave manipulators in radioactive environments, ensuring reliability and containment during fuel rod manipulation. In chemical and explosive handling, remote manipulators facilitate safe sorting, assembly, and disposal in laboratories and demolition sites; for instance, force-feedback teleoperators developed for hazardous substances allow operators to manage corrosive chemicals and explosives from a distance, preventing exposure to toxic vapors or risks. Key benefits of these manipulators include integration with radiation shielding in hot cell walls, which protects operators while allowing dexterous tasks such as irradiated components or sampling toxic residues, as demonstrated in IAEA-recommended and tool systems. Their precision, often achieved through 6-7 in master-slave configurations, supports fine manipulations under high- conditions without compromising . A notable from the post- cleanup in the late to involved telemanipulators in hot cell facilities, such as those at Romania's for Reactors, where over 2,000 fragments were gathered and inspected remotely in collaboration with the I.V. ; additionally, devices like the TR-2 miniature with TV-camera enabled debris sampling under intense gamma fields at the site.

Space Exploration

Remote manipulators have played a pivotal in by enabling the deployment, repair, and assembly of satellites and components in micro environments, where human dexterity is limited by the absence of gravitational forces and the need for precise orbital maneuvering. These systems allow astronauts to interact with objects at distances unattainable by hand, facilitating tasks such as capturing free-flying payloads and supporting extravehicular activities without direct physical contact. Their design addresses unique challenges like the lack of inertial reference in zero , requiring advanced force-torque sensing and computer-assisted to maintain during operations. One of the seminal systems is the Shuttle Remote Manipulator System (SRMS), known as , which debuted on the during mission in November 1981. This 15-meter-long articulated arm, with , was capable of handling s up to 14,515 kg and was integral to deployment and retrieval across 91 missions. Its integration with the shuttle's onboard computers provided semi-autonomous assistance, such as automatic collision avoidance, to aid operators in the confined microgravity of the payload bay. A successor, Canadarm2, was installed on the (ISS) in 2001 via , extending to 17.6 meters and supporting module berthing—such as securing the Kibo laboratory and European modules—as well as mobility during over 100 spacewalks by transporting equipment and crew members. Key milestones highlight the dexterity of these manipulators in operational settings. During , the Canadarm's inaugural deployment involved checkout maneuvers to verify its functionality in , marking the first use of a remote manipulator for space tasks. In 1993, on , the arm demonstrated exceptional precision by capturing the —traveling at 28,000 km/h relative to the shuttle—and berthing it securely in the payload bay for the first servicing mission, where astronauts replaced flawed optics and instruments during five spacewalks. These achievements underscored the arms' ability to manage long-reach operations in microgravity, overcoming challenges like dynamic coupling between the arm and spacecraft that could induce unwanted rotations. Looking ahead, NASA's incorporates advanced robotic arms for lunar surface tasks, building on these legacies to support sustainable exploration. The Cold Operable Lunar Deployable Arm (COLDArm), designed for extreme cold down to -280°F during lunar nights, will enable sampling, instrument deployment, and analysis on the Moon's , integrating with landers to perform autonomous manipulations in partial . This system addresses orbital and surface challenges by providing extended reach for habitat construction and resource utilization, paving the way for human-robotic collaboration in future missions.

Components and Technology

Key Components

Remote manipulators consist of several core hardware elements that enable precise and robust operation in challenging environments. The primary structural components include rigid , which form the arm's segments, and joints that connect these links to provide . Joints are typically revolute, allowing rotational movement around an , or prismatic, enabling linear along a path; for instance, the Remote Manipulator System (SSRMS) employs seven revolute joints, including , , and configurations, to achieve a high degree of freedom in positioning. The base mounting anchors the manipulator to a stable platform, such as a mobile transporter or fixed pedestal, ensuring overall system stability during tasks; in the SSRMS, the base interfaces with a Latching (LEE) for attachment to the Mobile Remote Servicer Base System or Power and Data Grapple Fixture. Additionally, boom assemblies serve as extended links in larger systems, with the SSRMS featuring two booms totaling 17.6 meters in length for extended reach. End-effectors represent the task-oriented interface at the manipulator's distal end, designed to interact directly with objects or environments. Common types include for grasping, such as the gripper with adjustable jaws for secure holding under pressure, or specialized tools like high-pressure water jets for cutting and scarifying, band saws for pipe sectioning, and welders for assembly. attachments allow quick swaps for versatility, often mounted via standardized plates; the SSRMS uses LEEs as end-effectors, incorporating snare, rigidize, and mechanisms to handle payloads up to 116,000 kg. Actuators provide the motive power to drive and end-effector motion, with selections based on required , , and environmental compatibility. Electromechanical systems commonly use or servo motors, as in the SSRMS where brushless motors with 1845:1 gear reduction deliver output of 1044 N-m in servo mode and 1630 N-m under braking, supporting maximum velocities of 5.0 degrees per second. Hydraulic actuators, prevalent in heavy-duty applications, employ cylinders for and rotary units for revolute ones; for example, an (ORNL) hydraulic manipulator features a with 2260 N-m at 13.8 (2000 ) and a driven by a cylinder. These configurations enable load capacities that vary by application and design, balancing power with system weight. Materials selection emphasizes durability against extreme conditions, such as , , or corrosive substances, to maintain structural integrity over prolonged use. High-strength alloys, like for housings and reflectors, and composites for lightweight links resist degradation; the SSRMS incorporates blankets, white paint coatings, and film heaters to protect against extremes in . In radiation-heavy environments, components use radiation-tolerant materials, including hard rubber seals for hydraulic systems and non-petroleum-based fluids to prevent corrosion and ensure longevity. These choices enhance overall robustness without compromising operational precision.

Control and Feedback Systems

Remote manipulators employ servo loops as a foundational architecture, where the operator manipulates a device that commands a slave manipulator through closed-loop and force servos, ensuring synchronized motion and interaction . This bilateral setup couples the human operator, , slave, and environment via servo controls to achieve precise . To enable compliant motion in unstructured environments, impedance control architectures adjust the manipulator's dynamic behavior, modulating stiffness and damping to mimic human-like adaptability during contact tasks. impedance control, in particular, enhances safety and performance in by dynamically tuning based on forces, allowing the system to respond softly to obstacles while maintaining . Haptic interfaces complement these architectures by delivering tactile to the operator, rendering contact forces through force-reflecting devices that simulate remote textures and resistances, thereby improving task dexterity and in applications. Essential sensors underpin these control systems, including position encoders that measure joint angles for accurate kinematics tracking, force/torque sensors that quantify interaction loads at the end-effector to inform compliance adjustments, and vision cameras that provide stereoscopic or imagery for operator of the remote workspace. These sensors feed data into loops, enabling environmental without direct hardware overlap. Bilateral teleoperation mechanisms transmit position commands from to slave and force signals from slave to , fostering a shared , while time-delay compensation techniques—such as predictor-based controllers and passivity-based methods—address communication latencies of several seconds , as experienced in ISS ground-controlled operations, by estimating future states and stabilizing the system against oscillations. Predictive displays augment this by visualizing extrapolated manipulator trajectories, reducing perceptual errors during delayed operations and enhancing overall . In modern applications like (ISS) operations, AI-assisted path planning integrates with these systems to automate collision-free trajectory generation, significantly lowering operator cognitive workload during complex maneuvers with manipulators such as Canadarm2. This leverages optimization algorithms to precompute feasible paths, allowing ground controllers to focus on high-level decision-making rather than manual piloting.

Challenges and Future Developments

Current Challenges

One of the primary challenges in remote manipulators is delay, where signal lags disrupt precise control and introduce instability. In space applications, round-trip communication delays can range from at least 0.5 seconds in to 1.5-2 seconds or more for deeper missions, causing operators to adopt compensatory strategies like move-and-wait that reduce efficiency and increase error rates. These delays stem from propagation times and processing overheads, making real-time feedback unreliable and complicating tasks such as manipulator alignment or object grasping. Durability remains a significant limitation for remote manipulators operating in harsh environments, particularly due to wear on joints and actuators from , extreme temperatures, and impacts. For instance, the Canadarm2 on the has experienced damage from orbital , affecting its boom and thermal blankets, necessitating in-orbit repairs to maintain functionality during long-duration missions. Such issues highlight the vulnerability of mechanical components to environmental stressors, leading to higher failure rates and the need for modular designs that allow component replacement without full system downtime. Operator poses another operational hurdle, driven by the high associated with poor haptic feedback and limited visual cues in teleoperated systems. In complex tasks, the absence of intuitive force or tactile sensations forces operators to rely heavily on visual interpretation, increasing mental effort and leading to reduced performance over extended sessions. Additionally, the steep for mastering these systems exacerbates , as operators must undergo rigorous to handle the between their actions and the manipulator's response, particularly in high-stakes scenarios like hazardous . Scalability challenges further constrain the design of remote manipulators, with difficulties in miniaturizing systems for applications like microsurgery while simultaneously enabling larger configurations for heavy industrial tasks. In microsurgery, achieving sub-millimeter accuracy requires compact actuators and sensors that maintain dexterity under biological constraints, yet current designs often compromise on load capacity or workspace size. Conversely, scaling up for industrial use introduces issues with structural integrity and power demands, where larger manipulators struggle with dynamic disturbances and nonlinearities that amplify control errors during heavy lifting or repetitive operations. These opposing requirements limit the adaptability of remote manipulators across diverse scales without specialized redesigns.

Emerging Technologies

Emerging technologies in remote manipulators are advancing toward greater , adaptability, and human-like interaction, driven by integrations of , novel materials, and enhanced interfaces. These developments aim to address latency and precision issues in remote operations, particularly and hazardous environments. AI and hybrids represent a key trend, enabling shared control systems where manages routine tasks while human s oversee complex decisions. In such setups, AI algorithms process data to execute repetitive actions like object grasping or path , reducing operator . 's Robonaut series incorporates features for semi-autonomous manipulation to assist astronauts. This shared control paradigm has been explored in assistive robotic arms, where AI predicts from partial inputs, improving in by up to 30% in simulated environments. As of 2025, AI advancements enable predictive to mitigate delays in deep space missions. Advanced materials are enabling softer, more resilient remote manipulators suited for delicate and extreme conditions. with compliant actuators, such as pneumatic or dielectric elastomer-based systems, allow for adaptive gripping and safer interaction with fragile objects, mimicking biological flexibility. These actuators provide variable , enabling manipulators to handle tasks from precise to compliant contact in unstructured settings. In space applications, carbon nanotubes (CNTs) are researched for their exceptional strength-to-weight ratio—up to 100 times stronger than at a fraction of the mass—and potential resistance to , supporting lightweight designs for structural components. VR/AR interfaces are evolving to support immersive , mitigating communication delays through predictive algorithms that simulate actions in virtual environments. These systems generate real-time 3D models of remote sites, allowing operators to preview movements and adjust commands preemptively. In for Mars , predictive (extended reality) frameworks reduce perceived from minutes to near-instantaneous by trajectories based on data. NASA's implementations, such as virtual labs using Mars datasets, enable operators to navigate and manipulate arms in AR overlays, enhancing mission planning accuracy. Recent 2020s advancements include haptic feedback devices and high-speed networks for finer control in remote operations. Haptic interfaces provide sensory feedback to operators, allowing them to feel textures and forces during , with prototypes achieving sub-millimeter in teleoperated tasks. Complementing this, integration facilitates real-time terrestrial remote operations by delivering ultra-low latency (under 1 ms) and high bandwidth for video feeds, enabling seamless control of manipulators in industrial settings like manufacturing. These technologies, tested in collaborative robot swarms, support synchronized multi-arm operations over distances exceeding 100 km without signal degradation. In 2024-2025, soft robotic manipulators have advanced for handling delicate items in space and industrial applications.

References

  1. [1]
    [PDF] illumination requirements for operating a space remote manipulator
    A remote manipulator is defined as any mechanical device that is controlled indirectly or from a distance by a human operator for the purpose of performing.
  2. [2]
    [PDF] HMMBUTION ofTHIS eocumarca UNUMHCS - OSTI
    HISTORY OF MANIPULATOR DEVELOPMENT. Historically, the initial attempts at nuclear manipulator development happened nearly simultaneously at a number of ...<|separator|>
  3. [3]
    [PDF] american nuclear society conference on remote operations and ...
    This paper discusses the issues, traditions, and experiences^ associated with the development of teleoperated manipula- tors for remote systems. The history of ...
  4. [4]
    [PDF] Making Remote Manipulators Easy to Use - OSTI.GOV
    Points in space that the manipulator can touch (ie. that are reachable) from the current manipulator base location are defined by its geometry and by its joint ...
  5. [5]
    [PDF] Remote Systems Design & Deployment
    Manipulators are generally classified by the input energy used to produce motion. ... The PNNL Mechanical & Robotic Systems Team has a long history of remote ...
  6. [6]
    [PDF] SRMS History, Evolution and Lessons Learned
    HE fundamental requirement of the Shuttle Remote Manipulator System (SRMS) was to deploy and retrieve payloads to and from space. To accomplish this mission, ...
  7. [7]
    [PDF] IllllIIIli-IIII1 - OSTI
    ''5 Master/slave telemanipulators have been defined as "general-purpose mechanical device[s] used by a human user in a normal environment to extend his hand ...
  8. [8]
    Safe Handling of Radioisotopes - UC Davis Safety Services
    Jan 17, 2020 · Remote Manipulation For radioisotopes presenting an exposure hazard, or any millicurie quantities, some remote manipulation may be necessary.<|control11|><|separator|>
  9. [9]
    Be THERE Now – ADJACENT - ITP
    Early iterations of these “Master-Slave Manipulators” were nicknamed “waldoes,” in homage to sci-fi writer Robert Heinlein's 1942 short story Waldo, which was ...Missing: origin | Show results with:origin
  10. [10]
    [PDF] Teleoperation of Humanoid Robots: A Survey - HAL
    Jan 10, 2023 · We can discern two retargeting strategies: unilateral and bilateral teleoperation. In the unilateral approach, the coupling between the human ...
  11. [11]
    2.2. Degrees of Freedom of a Robot - Foundations of Robot Motion
    The number of degrees of freedom of a robot is equal to the total number of freedoms of the rigid bodies minus the number of constraints on their motion.
  12. [12]
    [PDF] MASTER-SLAVE MANIPULATOR GUN - IRJET
    Power is transmitted from the master arm to the slave arm through an assembly of stainless steel wire ropes, stainless steel tapes and a parallelogram mechanism ...
  13. [13]
    [PDF] Design Of A Simple Hydraulic Manipulator For Robots - IOSR Journal
    Sep 2, 2025 · To address this, this study designs a simple hydraulic robotic arm with a four-bar linkage mechanism as its core: the mechanical and hydraulic.
  14. [14]
    Science Fiction: Its Nature, Faults and Virtues
    The other one, the waldos or remote control manipulators, was even simpler. Back in 1918 I read an article in Popular Mechanics about a poor fellow afflicted ...
  15. [15]
    "Waldo" : Imagining Remote Manipulators and TeleRobotics
    "Wearing a glove and harness, Waldo could control a much more powerful mechanical hand simply by moving his hand and fingers. This and other technologies he ...Missing: influence | Show results with:influence
  16. [16]
    Marvin Minsky's Telepresence Manifesto - IEEE Spectrum
    Aug 31, 2010 · My first vision of a remote controlled economy came from Robert A. Heinlein's prophetic 1942 short story, "Waldo." I suppose Heinlein had ...<|separator|>
  17. [17]
    Our History | Argonne National Laboratory
    Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed ...
  18. [18]
    Master-Slave Manipulator (Technical Report) - OSTI.GOV
    A device for manipulating a pair of tongs behind a shielding barrier has been built and tested. It is called a Master-Slave Manipulator.Missing: Raymond 1948
  19. [19]
    1954 – ElectroMechanical Manipulator – Ray Goertz (American)
    Sep 18, 2014 · Ray Goertz, who invented electrically remote manipulators for the nuclear industry, together with his team at Argonne Nuclear Laboratories (ANL), were engaged ...Missing: National Laboratory
  20. [20]
    US2632574A - Remote-control manipulator - Google Patents
    ... manipulator. US2846084A * 1955-06-21 1958-08-05 Raymond C Goertz Electronic master slave manipulator. US2949202A * 1956-05-17 1960-08-16 Treshow Michael ...<|separator|>
  21. [21]
    Master-slave Manipulator - R. C. Goertz - Google Books
    Author, R. C. Goertz ; Publisher, Argonne National Laboratory, 1949 ; Original from, the University of Michigan ; Digitized, Mar 19, 2009 ; Length, 6 pages.Missing: Raymond 1948
  22. [22]
    ELECTRONICALLY CONTROLLED MANIPULATOR - OSTI.GOV
    Title: ELECTRONICALLY CONTROLLED MANIPULATOR ; Authors: Goertz, R.C. ; Thompson, W.M. ; Publication Date: 1954-11-01 ; OSTI Identifier: 4387399 ; Resource Type: ...Missing: electromechanical servo tasks
  23. [23]
    [PDF] Robotics Applications at the Savannah River Site - CNTA
    Robots were first developed in the early 1960s with large, hydraulic-powered units and unique, proprietary, control systems. Electric robots controlled by ...
  24. [24]
    Radiation Hardened Manipulators for Hot Cell Environments
    PAR Systems' radiation hardened manipulator arms have withstood the test of time in radioactive environments with many in operation for over 50 years.Missing: 1970s hydraulic
  25. [25]
    (PDF) The evolution of teleoperated manipulators at ORNL
    The earliest teleoperation systems date back to the 1950 s when force-reflecting robotic manipulators were developed for the nuclear industry to provide haptic ...Missing: Argonne electromechanical
  26. [26]
    [PDF] R. C. Goertz Argonne National Laboratory Argonne, Illinois - Contrails
    Our Model 8 Master-Slave Manipulator is the eighth one that was designed either partially or wholly. In only one case did we stop the design and go on to a ...Missing: Raymond 1948
  27. [27]
    Merging computer science and robotic technology to modernize ...
    Jan 11, 2024 · The other route involves processing in heavily shielded, dedicated ​“hot cells.” These cells still use 1940s-era mechanical manipulators.Missing: history | Show results with:history
  28. [28]
    Master-Slave Manipulator - UNT Digital Library
    A device for manipulating a pair of tongs behind a shielding barrier has been built and tested. It is called a Master-Slave Manipulator because the slave ...Missing: Raymond 1948
  29. [29]
    [PDF] A design framework for teleoperators with kinesthetic feedback
    Bilateral Impedance Control suggests an alternative architec- ture (Fig. 3) in which a local servo loop enforces a commanded effort (force) and impedance.
  30. [30]
    [PDF] Hydraulic manipulator research at ORNL - OSTI
    7, was developed as a research manipulator for the. ORNL hydraulics laboratory. ... "The Evolution of Telerobotic Manipulators at. Oak Ridge National Laboratory," ...Missing: post- war
  31. [31]
    ROVs: The Workhorse of Subsea Hydraulic Systems
    May 15, 2021 · Remotely operated vehicles (ROVs) offer an excellent example of complex mobile electrohydraulic subsea systems. These robotic systems work in depths unsafe for ...
  32. [32]
    Development of a full ocean depth hydraulic manipulator with heavy ...
    Oct 14, 2024 · In this study, we developed a heavy-duty hydraulic manipulator capable of operating at full ocean depth.
  33. [33]
    Control of Force-Reflected Bilateral Teleoperation | SpringerLink
    ... scaling up or scaling down operation tasks for easy and accurate operations. Examples include hydraulic excavation and eye/brain surgeries. Download to read ...<|separator|>
  34. [34]
    [PDF] A Reproduced Copy - NASA Technical Reports Server (NTRS)
    Small controller input forces -- reduced operator fatigue. DISADVANTAGES. ,Accidental activation possible. Control does not provide clearly defined zero.
  35. [35]
    Top Uses of Underwater ROV Manipulators - Wevolver
    Mar 31, 2022 · Originally, ROV manipulators were large and hydraulically powered. Today, whilst large hydraulic manipulators are still the workhorse of the ROV ...Missing: electromechanical | Show results with:electromechanical<|separator|>
  36. [36]
    A Brief History of Materials R&D at Argonne National Laboratory ...
    Sep 3, 1996 · The establishment of a Remote Systems Division gave Argonne a strong capability for developing hot cell equipment, especially master-slave ...
  37. [37]
    [PDF] the alpha-gamma hot-cell facility at argonne national laboratory east
    The early EBR-II driver development program with its 46-cm-long fuel pins ... The facility's original design provided excellent remote-handling systems.
  38. [38]
    [PDF] Remote technology in spent fuel management
    Spent fuel assemblies (SFAs) need to be handled remotely in order to protect the operating personnel from the radioactive radiation originating from the fission ...Missing: 1960s | Show results with:1960s<|control11|><|separator|>
  39. [39]
  40. [40]
    [PDF] Protecting Worker Health and Safety Using Remote Handling Systems
    The purpose for designing and installing the remote reagent handling system was to eliminate the need for this contact handling of the reagents and thereby ...Missing: industry | Show results with:industry
  41. [41]
    Remote manipulator with force feed-back - NASA Technical Reports ...
    Jan 1, 1981 · It was developed to handle hazardous materials, such as radioactive substances, explosives, or corrosive chemicals.Missing: toxic | Show results with:toxic
  42. [42]
    [PDF] IAEA Safety Standards
    The standards apply to facilities and activities that give rise to radiation risks, including nuclear installations, the use of radiation and radioactive ...
  43. [43]
    None
    Below is a merged summary of the case studies related to post-Chernobyl cleanup using telemanipulators for debris handling (1980s-1990s). To retain all information in a dense and organized format, I’ve used a table in CSV format for detailed data, followed by a concise narrative summary. This approach ensures all specifics (e.g., technology, specifications, experience, URLs) are preserved and easily accessible.
  44. [44]
    A comprehensive survey of space robotic manipulators for on-orbit ...
    This survey delves into four crucial areas essential for successful OOS manipulation: object state estimation, motion planning, and feedback control.
  45. [45]
    [PDF] canadarm - NASA Technical Reports Server (NTRS)
    The Shuttle Remote Manipulator System (SRMS,. a.k.a the Canadarm) flew its inaugural flight on board the Space Shuttle Columbia (STS-2) in. November of 1981.Missing: debut | Show results with:debut
  46. [46]
    Canadarm -- The SRMS Technical Details
    The first flight of the SRMS was later that year - November 12, 1981. NASA subsequently ordered 4 additional Canadarm's, one of which was lost in the ...Missing: debut | Show results with:debut
  47. [47]
    STS-100 Brings Canadian Robotic Arm to the Space Station - NASA
    Apr 21, 2021 · The space shuttle Endeavour arrived at the space station on the STS-100 mission to install the Canadarm2 robotic system.Missing: length 15m source
  48. [48]
    About Canadarm2 | Canadian Space Agency
    Jul 16, 2024 · This Canadian robotic arm lends a helping hand to: perform Station maintenance; move supplies, equipment, Dextre and even astronauts; perform " ...Tasks · How It Works · How It Moves On The StationMissing: module | Show results with:module<|separator|>
  49. [49]
    ISS: MSS (Mobile Servicing System) - eoPortal
    Nov 12, 2013 · Canadarm2 has been used to move hundreds of tons of supplies and equipment and even astronauts, supporting about 100 spacewalks to the end of ...
  50. [50]
    Servicing Mission 1 (SM1) - NASA Science
    December 4, 1993. Mission specialist Claude Nicollier used Endeavour's robotic arm to gently dock Hubble in the shuttle's cargo bay so that his crewmates could ...
  51. [51]
    STS-61 - NASA
    During a record five back-to-back space walks totaling 35 hours and 28 minutes, two teams of astronauts completed the first servicing of the Hubble Space ...
  52. [52]
    Cold Operable Lunar Deployable Arm (COLDArm) - NASA
    This includes things like scooping and analyzing lunar soil, deploying instruments, and capturing photos of the lander's surroundings. Current robotic arm ...
  53. [53]
    None
    ### Summary of Key Hardware Components of the Space Station Remote Manipulator System (SSRMS)
  54. [54]
    [PDF] Research on the Use of Robotics in Hazardous Environments at ...
    Sandia National Laboratories researches robotics for handling, packaging, transport, and excavation of hazardous materials, including special nuclear materials ...Missing: toxic | Show results with:toxic
  55. [55]
    [PDF] N95- 14027
    in which the human operator, master manipulator, slave manipulator, and envi- ronment are coupled together through servo control loops. Such systems can ...
  56. [56]
    [PDF] N90-22087
    The position mode is bilateral master-slave control with a position servo loop and a force serve loop. The control block diagram is shown in Figure 7.
  57. [57]
    Variable impedance control on contact-rich manipulation of a ...
    Variable impedance control (VIC) endows robots with the ability to adjust their compliance, enhancing safety and adaptability in contact-rich tasks.
  58. [58]
    Teleoperation and Shared Control - HRII - IIT
    Tele-impedance control is a method for remotely controlling robotic platforms in interaction with uncertain environments. As an alternative to bilateral force- ...
  59. [59]
    4 Haptic Interfaces | Virtual Reality - The National Academies Press
    Haptic interfaces are devices that enable manual interaction with virtual environments (VEs) or teleoperated remote systems.
  60. [60]
    9 Telerobotics | Virtual Reality - The National Academies Press
    REMOTE MANIPULATORS. This section reviews remote manipulators from standpoints of kinematics, actuation, end effectors, and sensors. Specific examples of robots.
  61. [61]
    Stability and performance in delayed bilateral teleoperation: Theory ...
    Aug 9, 2025 · This paper investigates control schemes for task space bilateral teleoperation with communication time delays. Teleoperation in task space ...
  62. [62]
    Automating International Space Station Robotics Operations Planning
    Path Planning Algorithm Using the Particle Swarm Optimization and the Improved Dijkstra Algorithm ... International Space Station (ISS) using the Canadarm2 ...Missing: Canadarm | Show results with:Canadarm
  63. [63]
    Teleoperation with time delay. A survey and its application to space ...
    It is well known that the cycle time (round-trip delay) for systems in LEO is at least of 0.5 s. These values are further extended due to the time consumed in ...
  64. [64]
    Determining the Threshold of Time-Delay for Teleoperation ...
    The results suggest a threshold of time-delay in the range of 1.5–2.0 s. Beyond 1.5 s, subjects adopted a move-and-pause strategy that increased completion ...
  65. [65]
    Occlusion-aware trajectory prediction for time-delayed teleoperation ...
    Aug 14, 2025 · This study tackles the challenges of teleoperating space manipulators under communication delays and visual occlusion.
  66. [66]
    Op-ed | Damage to Canadarm2 on ISS once again highlights space ...
    Jun 3, 2021 · A piece of orbital debris recently hit Canadarm2, the nearly 18-meter-long robotic arm on the International Space Station that helps with maintenance tasks.
  67. [67]
    [PDF] Haptic-guiding to avoid collision during teleoperation
    Tele-operating a robotic manipulator, called slave-arm (SA) imposes a high cognitive load even on expert human operators and, consequently, results in severe ...
  68. [68]
    [PDF] Assessment of Physical Fatigue in Robot Teleoperation during ... - WPI
    This paper proposes a study to investigate the development of fatigue in robot teleoperation for a range of complex motion coordination tasks, and a method to ...
  69. [69]
    Microsurgery Robots: Applications, Design, and Development - MDPI
    The challenges in microsurgery can be mainly categorized into the following aspects: Microsurgery involves the manipulation of micron-scale targets, including ...
  70. [70]
    [PDF] Common Challenges in Control of Industrial Manipulators: A Review
    Feb 16, 2023 · Parameter uncertainties, disturbances, and nonlinearities make it very difficult to control the robot manipulator. Researchers are working on ...
  71. [71]
    (PDF) Challenges and Conceptual Framework to Develop Heavy ...
    Dec 12, 2020 · Different design of the traditional heavy-load manipulators. (a, b, c): Pneumatic manipulators. (d) An electric manipulator.Missing: remote | Show results with:remote
  72. [72]
    Robonaut2 - NASA
    What is a Robonaut? ... The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012.ISS Mission · ISS Mobility Upgrade · GM Partnership · AboutMissing: 2020s | Show results with:2020s
  73. [73]
    Exploring AI-enhanced Shared Control for an Assistive Robotic Arm
    Jun 23, 2023 · In our research, we explore how Artifical Intelligence (AI) can be integrated into a shared control paradigm.<|separator|>
  74. [74]
    About Robonaut - NASA
    Sep 26, 2023 · The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2011.Missing: 2020s | Show results with:2020s
  75. [75]
    Soft Robotic System with Continuum Manipulator and Compliant ...
    Aug 6, 2024 · In summary, the soft robotic system with a continuum manipulator and compliant gripper is designed for versatile and adaptive manipulation, ...Missing: 2020s | Show results with:2020s
  76. [76]
    Lightweight, Ultra-Strong Nanotubes to Transform Industry
    The material's ability to absorb neutron and ultraviolet radiation makes it an optimal choice for space exploration, and its strength and heat resistance can ...Missing: arms | Show results with:arms
  77. [77]
    Electromagnetic Radiation Shielding Using Carbon Nanotube and ...
    The lightweight carbon composition of CNTs provides moderate specific shielding effectiveness against ionizing radiation, including X-rays and gamma rays, ...
  78. [78]
    Virtual Reality Lab for Rover Navigation using Mars datasets
    A Virtual Reality Lab is introduced, based on real information, designed to enhance the training and navigation capabilities of planetary rovers using Mars ...
  79. [79]
    HAPTIX: Hand Proprioception and Touch Interfaces - DARPA
    A key focus of HAPTIX is on creating new technologies to interface permanently and continuously with the peripheral nerves in humans. HAPTIX technologies are ...
  80. [80]
    Robotics Meets 5G: Unlocking High-Speed, Low-Latency Automation
    Jan 6, 2025 · 5G technology boosts the capabilities of robotics, facilitating seamless communication and real-time control, crucial for advancements in ...Missing: 2020s | Show results with:2020s<|control11|><|separator|>
  81. [81]
    5G - The backbone of industry 4.0 - Damovo
    Oct 7, 2024 · 5G's ultra-low latency (measured in milliseconds) enables real-time control of machines and processes. That is crucial for tasks like remote ...